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Abstract
We anticipate that unmanned aerial vehicles will become popular wildlife sur-
vey platforms. Because detecting animals from the air is imperfect, we develop
a mark-recapture line transect method using two digital cameras, possibly
mounted on one aircraft, which cover the same area with a short time delay
between them. Animal movement between the passage of the cameras intro-
duces uncertainty in individual identity, so individual capture histories are unob-
servable and are treated as latent variables. We obtain the likelihood for mark-
recapture line transects without capture histories by automatically enumerating
all possibilities within segments of the transect that contain ambiguous identi-
ties, instead of attempting to decide identities in a prior step. We call this method
“Latent Capture-history Enumeration” (LCE). We include an availability model
for species that are periodically unavailable for detection, such as cetaceans that
are undetectable while diving. External data are needed to estimate the availabil-
ity cycle length, but not the mean availability rate, if the full availability model
is employed. We compare the LCE method with the recently developed cluster
capture-recapture method (CCR), which uses a Palm likelihood approximation,
providing the first comparison of CCR with maximum likelihood. The LCE esti-
mator has slightly lower variance, more so as sample size increases, and close to
nominal coverage probabilities. Both methods are approximately unbiased. We
illustrate with semisynthetic data from a harbor porpoise survey.

KEYWORDS
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1 INTRODUCTION

Aerial surveys of wildlife populations allow large areas
of land or sea to be surveyed at relatively low expense
(Henkel et al., 2007; Hammond et al., 2017). We anticipate
that aerial surveys with human observers will increasingly
be replaced by unmanned aerial vehicle (UAV) surveys
using digital video or still cameras. In this paper, we
develop a method of estimating animal density from
cameras deployed from UAVs.

Human observers can search as much as 1000 m either
side of an aircraft. Detections of animals decrease with dis-
tance from the aircraft, an effect that is modeled using a
detection function. By contrast, aerial footage from UAV-
mounted cameras has a much narrower field of view—
perhaps 100 m to either side—and detectability can often
be assumed to be constant within this zone, so that a
distance-dependent detection function is not needed.
Conventional line transect analyses assume that animals

are detected with certainty if they are at distance zero from
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the transect line, which in our case is the projection of
the aircraft’s path on the ground. If this assumption can-
not be met, extensions based on mark-recapture methods
are employed: see Burt et al. (2014) for an overview. The
basis of these extensions is to have two observers who
search the area independently of each other. They serve
as two “capture occasions,” and animals detected by both
observers are described as recaptures or duplicates. The
mark-recapture design enables us to estimate the detec-
tion probability of each observer, conditional on detection
by the other observer, and therefore to adjust for imperfect
detection at distance zero. In the case of narrow-strip aerial
surveys from UAVs, imperfect detection can result from
animals being indistinct or obscured in digital images, so a
mark-recapture designmay be necessary even if detectabil-
ity is constant with respect to distance.
Animals of some species may spend a proportion of

their time entirely unavailable for detection. For example,
whales are unavailable while diving, and seals are unavail-
able at haul-out sites while they are at sea. In the case
of acoustic surveys of calling animals, animals are only
available when vocalizing. If some animals are system-
atically unavailable to both observers, then the unavail-
able portion of the population is unsampled, so there is no
information fromwhich to estimate how large this portion
is. An ideal sampling design ensures that all animals are
subject to the same detection model, so that the sample is
representative of the entire population. In the case of ani-
mals that are periodically unavailable, for example due to
diving, this can be accomplished by incorporating an avail-
ability model into the analysis and sampling at more than
one time.
One way of sampling twice is to have two aircraft fol-

low the same transect at a fixed time delay. Ensuring that
the narrow search strips of two UAVs overlap adequately
can be difficult in some environments and a cheaper
alternative is to mount two cameras on a single aircraft:
one forward-pointing, the other rear-pointing. These can
be engineered so that the rear-pointing camera records
the same area as the forward-pointing camera after a time
delay of several seconds. This separation generates data
with which we can model the availability cycle, as long
as there is a chance that the availability status of an ani-
mal changes between the passage of the two cameras. For
example, a whale might dive or surface during this time
interval. In practice, the time delay will need to be suf-
ficiently long relative to the duration of the diving cycle
to ensure that the data are adequate to fit the availabil-
ity model.
Mounting both cameras on the same UAV has the

advantage of creating a different viewing aspect for the
two cameras: an animal that is obscured from one camera
by a bush or shadow might be detectable from the other

camera. Likewise, the longer time separation generated by
running two UAVs in succession creates the opportunity
for either camera to detect an animal that was undetected
by the other, due to changes in the animal’s position,
sunlight, or wind. The two-camera design therefore offers
general potential for conducting mark-recapture line
transect surveys from the air, regardless of whether or not
an availability cycle is involved.
There are two complications. First, because animals

may move between the passage of the two cameras, there
is uncertainty in whether detections in similar locations
by the two cameras are the same animal or two different
animals. We describe this as uncertainty in capture history.
Each detected animal has a true capture history specifying
which of the two cameras detected it, with capture histo-
ries (1, 0), (0, 1), and (1, 1) corresponding, respectively, to
detection by only the first camera, only the second camera,
or both cameras. When animals are detected from the
air, there are usually inadequate visible features for dis-
tinguishing between individuals, so recaptures are deter-
mined purely on the basis of spatial location and detection
time. The longer the time elapsed between the passage
of the two cameras, the more difficult it is to distinguish
between recaptures of a single individual, and captures
of two different individuals. Rather than the capture
histories being observed data, as they are in conventional
capture-recapture studies, they are now latent variables.
Second, although separation in time allows us to deal

with availability processes such as diving, there is likely
to be dependence between the animal’s availability state
at the passage of the two cameras, so we are forced to
adopt a model that accommodates this dependence. The
dependence is reduced as the time delay between the pas-
sage of the cameras increases. However, we demonstrate
below that the dependence never reduces to zero if animals
are mobile, because animal movement in and out of the
field of view of the cameras is itself an availability process.
Moreover, while longer delays may reduce the dependence
between cameras, they exacerbate the problem of capture-
history uncertainty.
We develop an analysis framework suitable for two-

camera aerial surveys. We explicitly model animal
movement into and out of the detection strip between the
passage of the two cameras, corresponding to an “in/out”
availability process that induces dependence between the
two cameras. For diving animals, we further consider an
“up/down” availability process by modeling the diving
cycle. As noted by Stevenson et al. (2019), two-observer
survey data do not contain sufficient information to
identify all parameters of the diving model, if the time
delay between cameras is less than the mean dive-cycle
duration. In that case, one parameter must be estimated
from external data: we take this to be the mean dive-cycle
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duration itself. We derive our methods in generality
including both in/out and up/down availability processes,
but the methodology is equally applicable when only the
in/out process is required, and in that case there is no
need for external data.
To fit the two-camera model, we use a full maximum-

likelihood approach. We assemble the likelihood by iden-
tifying segments of the transect line that have ambiguous
animal identities, and enumerating all possible matchings
within each segment. For reasonably low density, enu-
meration is manageable within each segment, and our
approach is computationally feasible using a constraint
programming algorithm. Conditional on a set of match-
ings, we use a hidden Markov model formulation of the
likelihood, with states reflecting animals’ availability to be
detected. This creates a general and extendable framework
for two-camera scenarios. We call our new approach the
Latent Capture-history Enumeration (LCE) method.
Previous literature has devoted substantial attention to

each of the problems of availability and uncertain cap-
ture histories, but rarely together. Availability models for
double-observer line transect surveys were developed by
Borchers et al. (2013), Langrock et al. (2013), and Borchers
and Langrock (2015). Most previous work on uncertain
capture histories has focused on methods for resolving
uncertainties before fitting conventional models. Pike and
Doniol-Valcroze (2015) used a logistic regression technique
to decide on an optimal dissimilarity score between pairs
of detections, then established a threshold score within
which pairs would be resolved as duplicates. Hamilton
et al. (2018) devised estimates of the duplicate probabil-
ity for each pair of detections, and repeatedly resampled
from these probabilities within a bootstrap scheme to cre-
ate a new resolved data set at each iteration. Other work
on latent capture histories has treated the case where
observedhistories are predictable, but noninvertible, trans-
formations of the latent histories (eg, Link et al., 2010; Bon-
ner and Holmberg, 2013; Zhang et al., 2019). This contrasts
with our casewhere no capture histories are observed: only
a stream of detections from each camera in continuous
time and space.
Our approach is most similar to that of Hiby and

Lovell (1998) and Stevenson et al. (2019). Hiby and Lovell
(1998) included both an availability model and uncertain
capture histories in their analysis, and they maximized a
log-likelihood obtained by summing over possible pairs
of detections. They did not allow animal movement in
the direction of aircraft travel, and some aspects of their
implementation were not explicit. Neglecting animal
movement in the direction of aircraft travel is not a prob-
lem for observers that travel much faster than the animals,
but it is a problem for slow-moving observers. Stevenson
et al. (2019) derived an alternative approach using the new

technique of cluster capture-recapture (CCR; see Fewster
et al., 2016). In CCR, the locations of detections are treated
as a clustered point-process and the model is fitted using
an approximation to the Palm likelihood (Tanaka et al.,
2008), which is a likelihood of pairwise distances over all
pairs of detections.
The CCR method is asymptotically consistent and

remains computationally efficient at high animal densi-
ties, unlike the LCE method we present here. However,
due to the approximation step it is not a maximum
likelihood method, and its performance has never been
compared against that of maximum likelihood due to the
difficulty of computing likelihoods in the scenarios for
which CCR is intended. Another key output of the present
work is therefore the first comparison between CCR and
maximum likelihood.

2 MODELS FORMOVEMENT AND
AVAILABILITY

Two observers move along a transect line, one behind the
other, searching a strip of half-width𝑤. They move at con-
stant speed 𝑣 and are separated by a time-lag 𝑙 and distance
𝑣𝑙. We use the general term “observers” and develop the
model for lags 𝑙 of any size, but we anticipate that the two
observers are most likely to be two cameras on the same
UAV (Figure 1).
We use two coordinates for location: the forward coor-

dinate along the transect line, and the transverse coordi-
nate perpendicular to the line. We say that an observer
“passes over” an animal at the instant that their forward
coordinates coincide, regardless of the animal’s transverse
coordinate at that instant. We assume that observer speed
exceeds animal speed, so the time at which each observer
passes over each animal is well-defined.
Animals may move between the passage of the two

observers. We model this as a Brownian motion, such that
the animal’s displacement over time 𝑡 follows a bivariate
normal distribution with mean (0,0) and variance 𝚺(𝑡) =
𝜎2𝑡𝑰, where 𝑰 is the 2 × 2 identity matrix.

2.1 Forward movement

For a given animal, the time elapsed between the passage
of the first and second observers overhead is a randomvari-
able 𝑇. We show inWeb Appendix A that 𝑇 has probability
density function (PDF)

𝑓𝑇(𝑡) =
𝑣𝑙 exp

{
−
𝑣2(𝑙−𝑡)2

2𝜎2𝑡

}
√
2𝜋𝜎2𝑡3

for 𝑡 > 0, and 𝑓𝑇(𝑡) = 0 otherwise.

(1)
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F IGURE 1 Illustration of the two-camera survey design, here with both cameras mounted on a single aircraft. Both cameras cover the
gray strip, separated by a time lag 𝑙. This detection zone has half-width 𝑤. The fields of view of the cameras are indicated by dark gray strips
spanning the width of the detection zone. It may be possible for animals within a wider strip of half-width 𝑏 to move into or out of the gray strip
between the passing of the first and second camera. 𝑌0 is the distance to the right of the trackline (the dark black center line), of an animal at
the time it comes into the first camera’s field of view (𝑡 = 0) and 𝑈0 is its surface state at this time: 𝑈0 = 1 if the animal is in the near-surface
state and 𝑈0 = 0 if not. The animal’s distance and surface state at times 𝑡 > 0 are 𝑌𝑡 and 𝑈𝑡 , respectively. The random variable 𝑍𝑡 is defined to
be 1 if the animal is in the detection zone at time 𝑡 (|𝑌𝑡| ≤ 𝑤), and 0 otherwise
2.2 Transverse movement
and in/out availability

The survey design involves two observers detecting ani-
malswithin a strip ofwidth𝑤 either side of the line. As ani-
mals may move into or out of the detection zone between
the passage of the two observers, we consider the survey
area to constitute a wider strip of width 𝑏 > 𝑤 either side
of the line, where the buffer 𝑏 is chosen such that there is
negligibly small probability that animals beyond 𝑏 at the
passage of the first observer will be within the searched
strip 𝑤 at the passage of the second. The buffered strip of
width 2𝑏 therefore covers all animals that may be exposed
to detection.
Let 𝑌0 be the signed distance of an animal to the right

of the transect line when the first observer passes over-
head, and 𝑌𝑡 be this distance time 𝑡 later. We assume that
𝑌0 ∼ 𝑈(−𝑏, 𝑏), independently for all animals. Our move-
ment model implies that 𝑌𝑡 − 𝑌0 ∼ 𝑁(0, 𝜎2𝑡).
For any animal within the buffered strip of width 2𝑏 at

the passage of the first observer, let the binary randomvari-
able 𝑍𝑡 be 1 if the animal is within the detection zone of
width 2𝑤 at time 𝑡, and 0 otherwise. Thus, 𝑍𝑡 describes
the animal’s in/out availability for detection at time 𝑡. The
probability ℙ(𝑍𝑡 = 0 ∣ 𝑍0 = 1) that an animal moves from
inside the detection zone at time 𝑡 = 0 to outside it at time
𝑡 > 0, and the probability ℙ(𝑍𝑡 = 1 ∣ 𝑍0 = 0) that it moves
from outside to inside the detection zone, are

𝑝𝐼𝑂(𝑡) = ℙ(𝑍𝑡 = 0 ∣ 𝑍0 = 1)

=
1

𝑤 ∫
𝑤

0

{
Φ(𝑦 − 𝑤; 𝜎2𝑡) + Φ(−𝑦 − 𝑤; 𝜎2𝑡)

}
𝑑𝑦, (2)

𝑝𝑂𝐼(𝑡) = ℙ(𝑍𝑡 = 1 ∣ 𝑍0 = 0)

=
1

𝑏 − 𝑤 ∫
𝑏

𝑤

{
Φ(𝑦 + 𝑤; 𝜎2𝑡) − Φ(𝑦 − 𝑤; 𝜎2𝑡)

}
𝑑𝑦,

(3)

where Φ(⋅; 𝜎2𝑡) is the cumulative distribution function of
a normal random variable with mean zero and variance
𝜎2𝑡.
We model in/out availability as a two-state Markov pro-

cess with transition probabilities over an interval of time 𝑡
given by Equations (2) and (3):

𝑴(𝑡) =

(
1 − 𝑝𝐼𝑂(𝑡) 𝑝𝐼𝑂(𝑡)

𝑝𝑂𝐼(𝑡) 1 − 𝑝𝑂𝐼(𝑡)

)
, (4)

with stationary distribution (𝑤∕𝑏, 1 − 𝑤∕𝑏).

2.3 Diving behavior and up/down
availability

We define a random variable 𝑈𝑡 to be 1 if an animal is in
the near-surface state and so available for detection at time
𝑡, and to be 0 otherwise. We further define (𝑈𝑡)𝑡≥0 to be
a two-state continuous-time Markov chain such that the
time spent in state 1 (the near-surface state) is an exponen-
tial random variable with expected value 𝜅, and the time
spent in state 2 (the diving state) is an exponential random
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variable with expected value 𝜏 − 𝜅, where 𝜏 is the expected
dive-cycle duration. The up/down state transition proba-
bility matrix at time separation 𝑡 is𝑼(𝑡) = exp(𝑸𝑡), where
exp( ) is the matrix exponential function and the Markov
transition rate matrix 𝑸 is

𝑸 =

⎛⎜⎜⎜⎝
−
1

𝜅

1

𝜅

1

𝜏−𝜅
−

1

𝜏−𝜅

⎞⎟⎟⎟⎠. (5)

The stationary distribution of the Markov chain is (𝛾, 1 −
𝛾), where 𝛾 = 𝜅∕𝜏.

2.4 Combined availability model

The possibilities of being in or out of the detection zone,
and up or downwith respect to diving, generate four states
that animals can occupy. These are, up and in: 𝑈𝑡 = 1,
𝑍𝑡 = 1; up and out: 𝑈𝑡 = 1, 𝑍𝑡 = 0; down and in: 𝑈𝑡 = 0,
𝑍𝑡 = 1; and down and out:𝑈𝑡 = 0, 𝑍𝑡 = 0. We number the
states 1 to 4 in that order. We assume that the up/down
state is independent of the in/out state, which is equivalent
to an assumption that animals are not disturbed by the
aircraft. The matrix of transition probabilities between
these states at time separation 𝑡 is then the Kronecker
product 𝚪(𝑡) = 𝑼(𝑡) ⊗𝑴(𝑡). Using a matrix formulation
for 𝚪(𝑡) provides an extendable and computationally
efficient way of dealing with the hidden states 2, 3, and
4. The stationary distribution for the four-state Markov
process is

𝜹 =
{
𝛾
𝑤

𝑏
, 𝛾
(
1 −

𝑤

𝑏

)
, (1 − 𝛾)

𝑤

𝑏
, (1 − 𝛾)

(
1 −

𝑤

𝑏

)}
. (6)

3 DETECTIONMODEL

We assume that the probability that an animal is in each
state at the time the first observer passes over it is given by
the stationary distribution 𝜹 , and hence that its state dis-
tribution after a waiting time 𝑡, when the second observer
passes it, is 𝜹𝚪(𝑡).
Define the binary variable 𝑋𝑖𝑗 to be 1 if animal 𝑖 is

detected by observer 𝑗 and zero otherwise.Wemodel𝑋𝑖𝑗 as
a state-dependent Bernoulli random variable with param-
eter 𝑝𝑗(𝑐) = Pr(𝑋𝑖𝑗 = 1 ∣ 𝐶𝑖𝑗 = 𝑐) where 𝐶𝑖𝑗 is the state of
animal 𝑖 when observer 𝑗 passes over it, and 𝑐 ∈ {1, 2, 3, 4}.
It follows that 𝑋𝑖𝑗 (𝑗 ∈ {1, 2}) are observations from a
Markov modulated Bernoulli process.
It is convenient to arrange the state-dependent probabil-

itymass functions of𝑋𝑖𝑗 in a diagonalmatrix (see Zucchini

et al., 2016, eq. 2.13). For observer 𝑗, this matrix is

𝑷𝑗(𝑥𝑖𝑗) =

⎡⎢⎢⎢⎢⎢⎢⎣

up,in up,out down,in down,out
Bern{𝑥𝑖𝑗; 𝑝𝑗(1)} 0 0 0

0 1 − 𝑥𝑖𝑗 0 0

0 0 Bern{𝑥𝑖𝑗; 𝑝𝑗(3)} 0

0 0 0 1 − 𝑥𝑖𝑗,

⎤⎥⎥⎥⎥⎥⎥⎦
(7)

where Bern{𝑥𝑖𝑗; 𝑝𝑗(𝑐)} ≡ 𝑝𝑗(𝑐)𝑥𝑖𝑗 {1 − 𝑝𝑗(𝑐)}1−𝑥𝑖𝑗 . This
allows detection of animals when “down,” but not when
“out.”We now assume that 𝑝𝑗(3) = 0, so that only animals
in the “up” and “in” state can be detected, but in general
this need not be the case.
Let 𝑡𝑖 be the time elapsed between the passage of the

first and second observers over animal 𝑖. Conditional on
𝑡𝑖 , the probability of observing capture history (𝑥𝑖1, 𝑥𝑖2) for
animal 𝑖 can be expressed as the following matrix product,
which efficiently sums over hidden states:

ℙ(𝑥𝑖1, 𝑥𝑖2 ∣ 𝑡𝑖) = 𝜹𝑷1(𝑥𝑖1)𝚪(𝑡𝑖)𝑷2(𝑥𝑖2)𝟏 , (8)

where 𝟏 is a column vector of ones. We label the three
observable capture histories as 𝜔̃1 = (0, 1), 𝜔̃2 = (1, 0), and
𝜔̃3 = (1, 1), and define 𝑞𝑘(𝑡) = ℙ(𝜔̃𝑘 ∣ 𝑡) as given in (8). The
overall probability of capture history 𝜔̃𝑘 is then

𝑞𝑘 = ℙ(𝜔̃𝑘) = 𝐸𝑡{ℙ(𝜔̃𝑘 ∣ 𝑡)} = ∫ 𝑞𝑘(𝑡)𝑓𝑇(𝑡) 𝑑𝑡 . (9)

4 SURVEYMODEL

We assume that the number and locations of animals
the forward direction, within distance 𝑏 of the transect
line at the time that the first observer passes overhead,
are governed by a Poisson process with intensity 𝐷(𝑠) at
along-transect location 𝑠. We derive the likelihood by sup-
posing that the capture history 𝜔𝑖 of each animal 𝑖 is
known.Wewill later revoke this requirement bymarginal-
izing over all possible assignments of detections to
capture histories.
Let 𝒔 = (𝑠1, … , 𝑠𝑛) be the observed forward locations of

the 𝑛 detected animals at the time of first detection.We can
write 𝒔 = (𝒔(1), 𝒔(2), 𝒔(3)), where 𝒔(𝑘) corresponds to loca-
tions of animals with capture history 𝜔̃𝑘 for 𝑘 = 1, 2, 3.
Each set of locations 𝒔(𝑘) arises from thinning the over-
all Poisson process by probability 𝑞𝑘. Because multinomial
splitting of a Poisson process produces independent Pois-
son subprocesses, the likelihood of 𝒔 is the product of the
three likelihoods from the thinned subprocesses. For ani-
mals with capture history 𝜔̃3 = (1, 1), we observe the time
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delay 𝑡 between detection by the first and second observers,
in addition to the locations of the animals at these
times. The time that it takes animals to move between
the two locations at which they were observed provides
information about the movement parameter 𝜎. The PDF
of waiting time 𝑇, conditional on the capture history being
𝜔̃3, is

𝑓𝑇∣𝜔(𝑡 ∣ 𝜔̃3) =
𝑓𝑇(𝑡) ℙ(𝜔̃3 ∣ 𝑡)

ℙ(𝜔̃3)
=
𝑓𝑇(𝑡) 𝑞3(𝑡)

𝑞3
, (10)

where the right-hand side of (10) is obtained from Equa-
tions (1), (8), and (9). This PDF is included as an auxiliary
component to the Poisson process likelihood for 𝒔(3).
Let 𝐿 be the total transect length of the survey, and let

𝑛𝑘 be the number of observations of capture history 𝑘 =
1, 2, 3, with 𝑛1 + 𝑛2 + 𝑛3 = 𝑛. Let 𝑞⋅ = 𝑞1 + 𝑞2 + 𝑞3 be the
overall probability of detection. We write 𝒔, 𝝎, and 𝒕 for
the locations, capture histories, and (where available) time
delays for animals 𝑖 = 1, … , 𝑛. The parameter vector is 𝜽
(see Section 4.1). The likelihood is

(𝜽; 𝒔, 𝝎, 𝒕) = exp
{
− ∫ 𝐿

0
𝐷(𝑢)𝑞⋅ 𝑑𝑢

}
𝑛1! 𝑛2! 𝑛3!

×

{
𝑛∏
𝑖=1

𝐷(𝑠𝑖)

}
𝑞
𝑛1
1
𝑞
𝑛2
2

×
∏

𝑖 ∶ 𝜔𝑖=𝜔̃3

{
𝑓𝑇(𝑡𝑖) 𝑞3(𝑡𝑖)

}
. (11)

4.1 Model parameters

The model has four kinds of parameters:
Density parameters: In the case of the homogenous

Poisson process there is one parameter, 𝜂, such that 𝐷 =
𝑒𝜂. When density varies with covariates, 𝜂 is replaced by a
linear predictor involving a parameter vector.
Dive-cycle parameters: The two-state dive-cycle

model described above is parameterized in terms of the
mean dive-cycle length, 𝜏, and the mean proportion of
time in the near-surface state, 𝛾, which are linked to
parameters 𝛼𝜏 and 𝛼𝛾 via log and logit links: 𝜏 = 𝑒𝛼𝜏 and
𝛾 = 𝑒𝛼𝛾∕(1 + 𝑒𝛼𝛾 ).
Movement parameters: The animalmovementmodel

has one parameter, 𝜎, which we model using a log link:
𝜎 = 𝑒𝜙.
Detection parameters: Assuming that animals are

only detectable when in state 𝑐 = 1 (up, in), we have two
Bernoulli parameters to model: 𝑝1(1) and 𝑝2(1). These can
be modeled using logit link functions. If the observers are
identical digital detectors, it may be reasonable to assume

these two probabilities are identical, ie, 𝑝1(1) = 𝑝2(1) =
𝑝 = 𝑒𝛽∕(1 + 𝑒𝛽).
Covariates can be incorporated by replacing the corre-

sponding scalar parameter on the link scale with a suitable
linear predictor involving the covariates.
We focus below on the constant density model with

identical detectors and no covariates, which has five
parameters: 𝜽 = (𝜂, 𝛼𝛾, 𝛼𝜏, 𝜙, 𝛽). Stevenson et al. (2019)
showed that these are not all identifiable from the two-
observer survey design. For the detection model, they
assumed that 𝑝 = 𝑒𝛽∕(1 + 𝑒𝛽) = 1. This is reasonable for
digital aerial surveys conducted in calm sea states, if we
define the near-surface state to be “at or breaking the sur-
face”: a state that is easily observed. The field of view of a
digital camera is such that objects toward the periphery of
the image are typically as easily detected as objects in the
center of the image, so a detection function that drops off
with distance from the line is not needed.
Stevenson et al. (2019) also showed that even when 𝑝 is

known, only two of (𝜂, 𝛼𝛾, 𝛼𝜏) are identifiable, so one of
these parameters must be estimated using external data.
We follow Stevenson et al. (2019) and Hiby and Lovell
(1998) and assume that the mean dive-cycle duration 𝜏 =
𝑒𝛼𝜏 is estimated separately, so we treat it as known in the
present survey. In what follows, we therefore assume that
detection of animals in the up/in state is certain (𝑝 = 1);we
use external estimates to set 𝜏; andwe estimate the remain-
ing three parameters. These constitute the density, 𝐷; the
mean proportion of time in the near-surface state, 𝛾; and
themovement parameter, 𝜎. The parameter vector is there-
fore 𝜽 = (𝜂, 𝛼𝛾, 𝜙).

5 MARGINALIZING OVER THE
LATENT CAPTURE HISTORIES

The likelihood (11) is formulated under the supposition
that the capture history vector 𝝎 is known for animals
𝑖 = 1, … , 𝑛. However, the core problemwhen observers are
separated in time is that the capture histories cannot be
known with certainty: they are latent variables. Here we
address this problem by enumerating all plausible com-
binations of latent capture histories. We marginalize the
likelihood by summing over the individual likelihoods for
every plausible capture history combination. We refer to
each combination of capture histories as a “pairing,” since
once the pairs of detectionswith capture history 𝜔̃3 = (1, 1)
have been decided, the capture histories (0, 1) or (1, 0) of all
other detections are determined, because we know which
of the two observers made each detection.
Calling the 𝑚th set of pairings 𝝎(𝑚), and the associ-

ated vectors of first-detection locations and time delays
𝒔(𝑚) and 𝒕(𝑚), respectively, we obtain the likelihood for the
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parameters 𝜽 as

(𝜽) =
𝑀∑
𝑚=1

(𝜽; 𝒔(𝑚), 𝝎(𝑚), 𝒕(𝑚)) , (12)

where𝑀 is the number of plausible pairings.
While this likelihood is easy to write down, it is chal-

lenging to evaluate because we need to enumerate all 𝑀
plausible combinations 𝝎(𝑚). For any but very small sam-
ple sizes, the number𝑀 of possible pairings is very large.
We tackle this problem by first partitioning the location
vector 𝒔 into subsets between which paired detections are
impossible, to reduce the number of plausible pairings, and
then using a constraint programming technique for effi-
cient enumeration of all possible pairings within subsets.
The constraint programming algorithm is described in
Web Appendix B.

5.1 Subdivision of s

We partition 𝒔 by “cutting” the transect line between adja-
cent detections (by either observer) that are separated by
a distance greater than a maximum possible distance that
an animal could have moved between the two observers
passing over it (𝑑𝑚𝑎𝑥). This distance 𝑑𝑚𝑎𝑥 must be decided
using knowledge of the movement speed and behavior of
the target species. A suitable value for 𝑑𝑚𝑎𝑥 can be chosen
by doing inference at a range of plausible values to find
where estimates become insensitive to 𝑑𝑚𝑎𝑥. The cost of
setting 𝑑𝑚𝑎𝑥 too large is in computational speed; the cost
of setting 𝑑𝑚𝑎𝑥 too small is positive bias in estimation of
𝐷, since setting 𝑑𝑚𝑎𝑥 too small will result in some animals
with true capture history (1,1) being assigned capture his-
tory (0,1) or (1,0).
Having divided the transect line into 𝑅 segments, we

enumerate the possible pairings 𝝎(𝑚𝑟) for segments 𝑟 =
1,… , 𝑅 and obtain the likelihood as

(𝜽) =
𝑅∏
𝑟=1

𝑀𝑟∑
𝑚𝑟=1

(𝜽; 𝒔(𝑚𝑟), 𝝎(𝑚𝑟), 𝒕(𝑚𝑟)) , (13)

where𝑀𝑟 is the number of possible pairings in segment 𝑟.
When 𝑑𝑚𝑎𝑥 is substantially smaller than most of the dis-
tances between detections by different observers, segmen-
tation can lead to amassive reduction in computation time.

5.2 Interval estimation

We estimate the variances of parameters using the inverse
of the Hessian obtained in the fitting process. Confidence

intervals for the parameters 𝐷, 𝜎, and 𝛾 are gained from
the inverse log transformation of confidence intervals for
𝜂 and 𝜙, and the inverse logit transformation of 𝛼𝛾, assum-
ing normality of the maximum likelihood estimators of
these parameters.

6 APPLICATION

We use the term “Latent Capture-history Enumeration”
method, or LCE, to describe our framework. We devel-
oped this method in anticipation of digital aerial survey
data becoming widely used, but, pending the availability
of analysis methods such as the LCE method developed
here, such data are not yet available. We therefore esti-
mate density from the semisynthetic data used by Steven-
son et al. (2019). These data are taken from an aerial sur-
vey of harbor porpoise (Phocoena phocoena) in the North
Sea using human observers, compiled from periods when
the aircraft circled back over its transect after a lag of 𝑙 =
248 s. The two observers correspond to the two passes of
the aircraft. Only data in a narrow strip of half-width 𝑤 =
0.125 km are included, to mimic the narrow field of view
and perfect near-surface detection characteristic of digital
observers. The data for both the LCE and CCR methods
comprise the two sets of locations of detected animals: 𝒔1
for those detected by observer 1, and 𝒔2 for those detected
by observer 2.Which of the observer 1 detections are recap-
tured by observer 2 is unknown, and the LCEmethod con-
siders all possibilities.
A lag of 𝑙 = 248 s is longer than plausible values for 𝜏

(Stevenson et al., 2019), and so the surfacing states of an
animal at the times the observers pass are independent and
the estimator is robust to unknown 𝜏. For shorter lags 𝜏
must be specified (see Section 7).
Following Stevenson et al. (2019), we use a buffer of

𝑏 = 2 km, beyond which we assume no animal could
enter the detection zone between the passage of the two
observers. Stevenson et al. (2019) applied a Palm likeli-
hood estimation approach, termed CCR. For comparison
with their work, we quote results for parameter 𝜎𝑝𝑎𝑙𝑚 and
mean animal speed: see Web Appendix C for the rela-
tionship between these parameters and the parameter 𝜎
used above. Stevenson et al. (2019) obtained the following
estimates, with 95% confidence intervals in brackets: 𝐷̂ =
1.05 (0.84, 1.60) pods per km2; 𝜎̂𝑝𝑎𝑙𝑚 = 0.15 (0.11, 0.19)
km; and the expected proportion of time in the surface
state, 𝛾̂ = 0.86 (0.56, 1.00). Using the LCE method, we
obtain 𝐷̂ = 1.24 (0.97, 1.60) pods per km2, 𝜎̂𝑝𝑎𝑙𝑚 = 0.09
(0.07, 0.11) km, and 𝛾̂ = 0.73 (0.55, 0.91). The estimate
𝜎̂𝑝𝑎𝑙𝑚 = 0.09 corresponds to a mean rate of displacement
over 𝑙 = 248 s of 0.58 m/s, with 95% confidence interval
(0.47, 0.71)m/s.
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Stevenson et al. (2019) estimated the coefficients of vari-
ation (CV) of 𝐷̂, 𝜎̂𝑝𝑎𝑙𝑚, and 𝛾̂ to be 19%, 16%, and 13%,
respectively. The corresponding estimated CVs from the
LCE method are 13%, 10%, and 13%, respectively. The esti-
mates from the two methods are broadly consistent; the
LCEmethod estimates there to be substantially less animal
movement, slightly less time at the surface, and a higher
animal density. Aswe cannot evaluate the relativemerits of
the methods on the basis of a single survey with unknown
density, we investigate their performance by simulation.

7 SIMULATION STUDY

Recall that 𝑋𝑖1 and 𝑋𝑖2 are detections of animal 𝑖 by two
observers separated by a time lag. With lags close to zero,
𝑋𝑖1 and 𝑋𝑖2 are highly correlated because animals avail-
able to one observer are almost certain to be available to
the other. As lag increases, we expect this correlation to
decrease. A pertinent question is whether dependence can
be removed by choosing a suitably long lag. To investigate
this, we look at the correlation between 𝑋𝑖1 and 𝑋𝑖2 as a
function of lag, with 𝛾 values from 0.1 to 0.9, and lags from
0 to 500 s.
In our model, 𝑋𝑖1 and 𝑋𝑖2 are Bernoulli random vari-

ables with expectation 𝛾𝑤∕𝑏. The correlation between
these variables when there is a separation of 𝑡 s between
the two observers passing over an animal, is

𝜌(𝑡) =

∑1

𝑥𝑖1=0

∑1

𝑥𝑖2=0

(
𝑥𝑖1 − 𝛾

𝑤

𝑏

)(
𝑥𝑖2 − 𝛾

𝑤

𝑏

)
ℙ(𝑥𝑖1, 𝑥𝑖2 ∣ 𝑡)

𝛾
𝑤

𝑏

(
1 − 𝛾

𝑤

𝑏

) ,

(14)

where ℙ(𝑥𝑖1, 𝑥𝑖2 ∣ 𝑡) is given in (8).
The dark line in Figure 2 shows the correlation as a func-

tion of the lag (𝑡 = 𝑙) for 𝜏 = 110 s and 𝛾 and 𝜎 equal to the
estimates obtained in the previous section. It also shows
the correlation for 𝛾 ∈ {0.1, 0.2, … , 0.9} and the correlation
under the assumption that animals do not move but do
become unavailable by diving.
It is clear that increasing the lag to 𝜏 or more reduces

correlation to approximately zero (gray lines) if animals
do not move and we consider only animals within 𝑤
of the transect line, although in the presence of animal
movement (when we consider animals within 𝑏 of the
line) there is still correlation between observers due to
in/out availability. The decay to zero corroborates the
observation of Stevenson et al. (2019) that correlation
between observers due to up/down availability can be
removed by setting a lag greater than 𝜏. With such long
lags, the up/down availability model requires only the
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F IGURE 2 Correlation betweendetections by the two observers
as a function of lag for mean proportions of time available 𝛾 =
10% (bottom black line), 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% (top
black line). The thick black line is for 𝛾 = 73%. The gray dashed lines
show the correlation under the assumption of no animal movement,
for which there is no in/out process and 𝑏 = 𝑤

single parameter 𝛾, corresponding to the proportion
of time spent at the surface. This has the considerable
advantage that there are no unidentifiable parameters, so
no external data are needed to estimate density.
In practice, we are primarily interested in methods for

surveys with two cameras on one aircraft, and with this
configuration and fast-moving aircraft, lags of more than
some tens of seconds are unlikely to be achievable. In light
of this, and the results of Figure 2, we present simulations
for (a) a scenario designed to imitate the porpoise survey
above, and (b) scenarios with lag 𝑙 of 10, 20, 50, and
80 s, and 𝛾 approximately equal to, and bracketing, the
estimates of 𝛾 obtained above, namely, 0.5, 0.8, and 0.9.
For 𝜎, we use values 15, 8, and 23, which correspond to the
rounded mean of the estimated 𝜎𝑝𝑎𝑙𝑚 from the LCE and
CCR methods (in m), converted from 𝜎𝑝𝑎𝑙𝑚 to 𝜎 (see Web
Appendix C), and to rounded values that are 50% smaller
and 50% larger, respectively. In all cases, we use the same 𝜏
in estimation as was used in simulation. For the short-lag
scenarios in (b), we perform simulations with true density
𝐷 = 1.24 porpoise per square km, as estimated in the
previous section, and with an observer speed of 100 knots,
which is around the typical speed of marine aerial surveys
such as the harbor porpoise survey above. We performed
1000 simulations for each scenario.

7.1 Simulation based on harbor
porpoise data: lag of 248 s

For this scenario, we use the estimates of Stevenson et al.
(2019) as the generating values, corresponding to 𝐷 =
1.05, 𝛾 = 0.86, and 𝜎𝑝𝑎𝑙𝑚 = 0.15. Initial line length is 𝐿 =
1100 km, which is subsequently doubled or tripled to
increase sample sizes. We investigate by simulation the
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TABLE 1 Simulation results for LCE and CCR estimators from 1000 simulations

Gamma Lag Sigma %BiasLCE %cvLCE %CoverLCE %BiasCCR %cvCCR Mean (𝒏) Mean (𝒎)
1 0.50 10.00 8.00 2.21 16.93 0.95 1.12 20.00 170.77 132.86
2 0.50 10.00 15.00 1.17 21.19 0.93 0.22 26.52 170.65 122.80
3 0.50 10.00 23.00 4.30 27.56 0.90 2.15 33.57 170.74 111.29
4 0.50 20.00 8.00 1.51 12.73 0.95 0.78 14.94 170.51 111.97
5 0.50 20.00 15.00 1.72 17.07 0.94 0.06 20.53 170.06 99.12
6 0.50 20.00 23.00 3.36 22.38 0.93 1.98 28.00 170.85 85.25
7 0.50 50.00 8.00 1.21 10.23 0.96 0.39 11.93 170.72 81.12
8 0.50 50.00 15.00 1.86 15.58 0.96 -0.02 18.91 170.78 66.02
9 0.50 50.00 23.00 4.95 24.10 0.94 1.92 29.16 170.46 51.06
10 0.50 80.00 8.00 1.25 10.62 0.95 0.05 12.74 170.26 69.23
11 0.50 80.00 15.00 2.45 17.22 0.95 1.28 21.46 171.15 52.54
12 0.50 80.00 23.00 7.90 32.99 0.92 5.33 45.14 171.08 39.22
13 0.80 10.00 8.00 2.51 11.81 0.95 3.89 15.93 273.34 229.51
14 0.80 10.00 15.00 4.33 15.89 0.91 5.16 21.74 272.54 211.30
15 0.80 10.00 23.00 6.94 22.44 0.86 8.78 30.79 271.98 190.81
16 0.80 20.00 8.00 1.10 7.49 0.98 0.90 9.86 272.79 209.18
17 0.80 20.00 15.00 2.66 10.49 0.95 3.04 14.48 272.21 185.03
18 0.80 20.00 23.00 5.29 16.63 0.93 5.15 22.17 272.47 158.80
19 0.80 50.00 8.00 0.78 5.49 0.98 0.61 7.10 273.61 181.84
20 0.80 50.00 15.00 1.41 8.57 0.96 1.57 12.04 272.70 146.84
21 0.80 50.00 23.00 3.25 14.52 0.95 3.40 19.64 272.12 114.33
22 0.80 80.00 8.00 0.08 5.50 0.98 -0.32 7.17 271.88 168.45
23 0.80 80.00 15.00 1.57 9.50 0.96 0.73 12.45 273.69 128.56
24 0.80 80.00 23.00 4.74 18.09 0.92 3.46 21.25 273.04 94.71
25 0.90 10.00 8.00 2.28 7.34 0.99 3.50 11.03 306.86 264.08
26 0.90 10.00 15.00 3.59 10.65 0.98 4.48 15.76 307.17 244.15
27 0.90 10.00 23.00 7.58 16.88 0.95 10.36 24.91 307.25 221.46
28 0.90 20.00 8.00 0.50 4.32 0.99 0.29 5.99 306.26 247.58
29 0.90 20.00 15.00 1.99 6.51 0.98 2.32 9.83 307.15 220.34
30 0.90 20.00 23.00 3.53 11.57 0.96 4.61 17.10 305.50 188.14
31 0.90 50.00 8.00 0.27 4.31 0.99 -0.15 5.62 306.65 226.09
32 0.90 50.00 15.00 0.48 6.05 0.99 0.34 8.68 306.53 183.73
33 0.90 50.00 23.00 3.02 10.29 0.95 3.23 14.00 306.43 142.15
34 0.90 80.00 8.00 0.18 4.45 0.99 -0.11 5.85 306.40 212.91
35 0.90 80.00 15.00 1.25 7.22 0.97 0.52 9.77 305.61 160.81
36 0.90 80.00 23.00 4.23 13.94 0.90 4.72 18.11 307.35 119.72

Here, Gamma is the proportion of time animals are available, dive-cycle length is 110 s, Lag is the time between observers, Sigma is the animal diffusion rate
parameter, and Mean (𝑛) and Mean (𝑚) are the mean numbers of detections by one observer and the mean number of recaptures, across simulations.

bias and precision of the LCE estimator. In the light of our
results in Section 6, where we obtained an LCE estimate
that was 18% greater than the CCR estimate of Stevenson
et al. (2019), we also investigate whether this discrepancy
is within the bounds expected due to estimator variability.
The empirical bias and CV of the LCE and CCR density

estimators from 1000 simulations are 9.9% (CV = 29.8%)
and 12.7% (CV = 37.9%), respectively. The biases reduce

to 4.3% (CV = 18.0%) and 5.1% (CV = 21.4%) when sample
size is doubled while holding density constant, and to 2.9%
(CV = 14.6%) and 3.3% (CV = 16.7%) when sample size is
tripled.
The correlation between LCE and CCR density esti-

mates from the simulations is 0.75, while the probability of
getting a relative difference as large as, or larger than, that
observed is approximately 20%, from which we conclude
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F IGURE 3 Box plots of estimated LCE density for each of the 36
scenarios. The horizontal line is at true density 𝐷 = 1.24. Scenarios
are numbered in the same order as they appear in Table 1. Vertical
dashed lines separate simulations according to the three sample size
groups shown in Figures 4 and 5

that the observed difference is not large enough to raise
concerns about the validity of either estimator with the
porpoise data.
The LCE estimator formulates the delay in encounter

times between the two observers as a random variable, due
to along-transect animal movement toward or away from
the second observer, while the CCR method currently
does not, and instead assumes these times to be equal to
the lag time between the observers. We anticipate that
this will cause the expected values of the two estimators
to diverge for long lags, or for the case where animal
speeds are nonnegligible relative to observer speeds, and
this may cause the CCR estimator of density to become
biased. Here, however, with the observers moving some 50
times faster than the animals, and the standard deviation
of the difference between encounter lag and observer lag
being only 2.4% of the observer lag, the effect on the CCR
estimator is very small.

7.2 Short-lag scenarios

Here, we investigate the bias and confidence interval cov-
erage of the LCE density estimator under short-lag sce-
narios, and compare them with those obtained from the
CCR estimator of Stevenson et al. (2019). There are 36 sim-
ulation scenarios corresponding to all combinations of lag
𝑙 ∈ {10, 20, 50, 80} s, 𝛾 ∈ {0.5, 0.8, 0.9}, and 𝜎 ∈ {8, 15, 23}.
We set 𝐿 = 1100 km,𝑤 = 0.125 km, and 𝜏 = 110 s. Simula-
tion results are summarized in Table 1. Boxplots of the LCE
density estimates for each of the 36 scenarios are shown in
Figure 3.
The LCE density estimator is unbiased or nearly unbi-

ased in all 36 scenarios. Figure 4 shows the empirical bias
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F IGURE 4 Percentage difference of estimated density from true
density, as a function of mean number of detections by a single
observer. The LCE estimator is represented by circles, the CCR esti-
mator by crosses. Crosses are offset 8 points to the right, to avoid over-
lap with circles. From left to right, the mean percentage difference
within each of the three groups of estimates is 2.8, 2.9, and 2.4 in the
case of the LCE estimator, and 1.3, 3.0, and 2.8 in the case of the CCR
estimator

as a function of the mean number of detections by each
observer, together with the empirical bias of the CCR esti-
mator fitted to the same simulated data. The bias of the two
estimators is very similar. The correlation between the two
estimators varies from 0.576 to 0.871 across the 36 scenar-
ios, and the mean difference of the estimator means from
the true density, as a percentage of the true density, is 2.71%
in the case of the LCE estimator, and 1.7% in the case of the
CCR estimator.
The CV of the LCE and CCR density estimators for all

36 scenarios are shown in Figure 5. The CVs decrease with
sample size, as expected. The CV of the LCE estimator
is less than that of the CCR estimator in all cases, the
more so the larger the sample size. We interpret this
to be a consequence of the fact that the CCR estimator
is not a maximum likelihood estimator, being based
instead on an approximation to the Palm likelihood of
pairwise comparisons between detections, so it does not
have the asymptotic efficiency of a maximum likelihood
estimator. Nevertheless, the difference in precision of the
two estimators is very small.
In almost all cases coverage probability is close to 95%

(Table 1), with coverage probability tending to be a bit
worse when lag is short and there is greater movement
(larger 𝜎), and tending to be too high when animals are
almost always available (𝛾 = 0.9). We conclude that for
these scenarios, the LCE estimator is approximately unbi-
ased, with confidence interval coverage usually close to
nominal, but slightly highwhen animals are almost always
available. The performance of the LCE andCCRestimators
is very similar, with the LCE estimatormaking a slight gain
in precision as sample size increases.
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F IGURE 5 Percentage coefficient of
variation (%CV), as a function of mean
number of detections by a single observer.
The LCE estimator is represented by circles,
the CCR estimator by crosses. Crosses are
offset eight units to the right, to avoid
overlap with circles. A, The %CV. B, The
amount by which the CV from the CCR
method exceeds that from the LCE method,
expressed as a percentage of the LCE CV

8 DISCUSSION

We have focused here on surveys for diving animals
conducted by UAVs, but the LCE method is applicable
to a broad range of survey scenarios. In its simplest
formulation, our full model involves parameters 𝐷 and
𝜎 for modeling density and animal movement, and three
parameters for detection and availability: parameter 𝑝
for detection of available animals, and parameters 𝜏 and
𝛾 to model availability via the diving cycle. Only one
of the three parameters (𝑝, 𝜏, 𝛾) is identifiable from the
two-observer design (Stevenson et al., 2019), but in many
survey scenarios this is not an impediment to application.
For our scenario, involving narrow-strip surveys of

diving animals from UAVs, we set 𝑝 = 1, obtained 𝜏 from
external data, and estimated 𝛾. For UAV surveys of non-
diving animals, including land surveys, the parameters
𝜏 and 𝛾 are not needed, so parameter 𝑝 can be estimated
from the two-observer data. When animals on a terrestrial
survey are missed because the view of them is obscured
(by a bush, for example), the probability of being obscured
would be reflected in the estimate of 𝑝. This survey type
is described as mark-recapture or double-count aerial
surveys, and the new development offered by LCE is to
accommodate animal movement and uncertain capture
history into this design. For surveys with a wider field of
view, for example from conventional aircraft, detection
may decrease with distance from the trackline and the sur-
vey type is described as mark-recapture distance-sampling
(MRDS). In this case, additional data are collected on the
perpendicular distances of animals from the trackline,
enabling additional parameters to be estimated which
describe the decay of detections with distance. The LCE
method provides a framework for MRDS surveys to incor-
porate animal movement and uncertain capture histories,
developments that have been recommended in previous
work (Burt et al., 2014).
The LCE method has some advantages over the CCR

method, but its computation time does not scale well as

density increases. While we were able to deal with mod-
erately large sample sizes above, this is because density
was low enough that the transect line could be divided into
many segments with relatively few possible combinations
of capture histories within each segment. The number of
possible capture histories increases very rapidlywhen each
observer detects more than a few animals within a seg-
ment, and computation by the LCEmethodwill be infeasi-
ble in this case. The number of possible capture histories is
𝑁𝐶𝐻 =

∑𝑛∗
2

𝑚=0

(𝑛∗
2

𝑚

)
𝑛∗
1
!∕(𝑛∗

1
− 𝑚)!, where 𝑛∗

1
is the larger of

𝑛1 and 𝑛2, and 𝑛∗2 is the smaller. As 𝑛
∗
1
increases, the LCE

estimation method will become too slow to be practically
useful on typical desktop computers. The CCRmethod, by
contrast, scales well and is able to deal with much larger
numbers of detections.
Being a maximum likelihood method, the LCE method

has the advantage of being able to use the extensive infer-
ence results and machinery associated with maximum
likelihood, including asymptotic efficiency and likelihood-
based variance estimators and model-selection criteria
such as Akaike’s information criterion (AIC). The CCR
estimator is slightly less efficient than the LCE estima-
tor for large sample sizes, requires variance estimation
by bootstrap, and cannot take advantage of likelihood-
based model selection tools. It does not currently accom-
modate varying times between encounters of animals due
to animal movement, although in the scenarios we consid-
ered this has negligible effect—this will be important for
much slower moving observers. Finally, the LCE method
provides an inference framework that allows inclusion
of covariates in all parameters mentioned in Section 4.1.
While covariates were not available for our application, we
anticipate that they may be collected on future surveys.
The major advantage of both the LCE and the CCR

frameworks is that they do not require duplicate sightings
to be identified between the two observers. We anticipate
that this will facilitate substantial reduction in the cost of
processing double-observer data, because it allows the esti-
mation process to be automated. For automatic processing,
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we only need an adequate automatic identifier of the tar-
get species in each of the two separate video streams. Since
false positives are not handled by our framework, criteria
for automated object identification must be set conserva-
tively so that the false-positive rate is reduced almost to
zero. This will have the effect of lowering the detection
probability, 𝑝, so we will not be able to assume that 𝑝 = 1.
As described above, 𝑝 is estimable from the data if there
is no dive-cycle model, and potentially estimable even in
the presence of a dive-cycle model if a varying-lag design
is employed. It is therefore likely that fully automated sur-
vey processing will become achievable in the near future,
commensurate with advances in object identification algo-
rithms and UAV engineering.
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1. Web Appendix A: Derivation of fT (t)

Define the time and forward coordinate at which observer 1 passes over an animal to be 0.

The animal’s forward coordinate at time t is σWt, where Wt is a one-dimensional Brownian

motion. The forward coordinate of observer 2 at time t is −vl + vt. The time at which

observer 2 passes over the animal is therefore the minimum t such that

−vl + vt = σWt ⇒ vt

σ
−Wt =

vl

σ
. (1)

The passage time for observer 2 is therefore T = inf{t : vt/σ+Bt = vl/σ}, where Bt = −Wt

is also a Brownian motion. Now if a particle follows Brownian motion with drift parameter

c, such that its location at time t is Xt = ct + Bt, then the random variable T = inf{t :

Xt = a} is the first passage time to location a, and has probability density function fT (t) =

a exp
{

−(a−ct)2

2t

}
/(
√

2πt3). Substituting c = v/σ and a = vl/σ, we obtain the probability

density of the time T at which observer 2 passes over the animal as Eqn (1).

2. Web Appendix B: Constraint programming for enumerating all ω(m)

For efficient enumeration of the possible pairings within one segment, we define a simple 

constraint satisfaction problem (CSP) (Russell and Norvig, 2010, Chapter 6). A CSP is a 

triple P = 〈X , D, C〉. The CSP P has a set of decision variables X , each of which has a set 

of possible values that it may take, called its domain, where D(x) is the domain of x ∈ X . 

In addition there is a set of constraints C that restrict the combinations of values that may 

be taken by the variables. A constraint c ∈ C is a relation defined on a set of variables:
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scope(c) ⊆ X . A solution is an assignment of values to variables such that each variable is

assigned a value from its domain, and all constraints are satisfied.

We define a CSP for a segment as follows. Two detections by different observers may be

paired if and only if the distance between them is less than or equal to dmax. For each set

{i, j} of two observations that may be paired, we define one decision variable xi,j with domain

{0, 1}. Variable xi,j is equal to 1 in a solution if and only if the two observations are paired.

X is the set of all such decision variables xi,j. D is the function {(xi,j, {0, 1}) | xi,j ∈ X}.

Suppose we have two distinct sets, s1 = {i, j} and s2 = {k, l}, where i may be paired with

j, and k may be paired with l, but the two sets are not disjoint: in other words s1 ∩ s2 6= ∅.

In all such cases we add the constraint cs1,s2 = (xi,j = 0 ∨ xk,l = 0) to prevent such pairing.

The set C contains all such cs1,s2 and no other constraints. All components of the CSP

P = 〈X ,D, C〉 have now been defined.

We use a backtracking search procedure with forward checking (Russell and Norvig, 2010,

Chapter 6) to enumerate all solutions to the CSP. The set of solutions to the CSP corresponds

one-to-one to the set of valid pairings within the segment. When a solution is found, the part

of the likelihood pertaining to that pairing is calculated, avoiding the need to store the set

of pairings and allowing efficient calculation of
∑Mr

mr=1 L
(
θ; s(mr),ω(mr), t(mr)

)
.

3. Web Appendix C: The relationship between σpalm, σ and mean animal speed

The σ of Stevenson et al. (2019), which we call σpalm here, is based on the displacement

of animals from the midpoint of their two locations after time l has elapsed, which is

normally distributed with mean zero and variance equal to σ2
palm. If we let the signed

distance between the first and second location be Y , then Y/2 ∼ N(0, σ2
palm) and hence√

{Y/(2σpalm)}2 = |Y |/(2σpalm) ∼ χ(1). Using the fact that the expected value of a χ(1)

random variable is
√

2/Γ(0.5), we have that E {|Y |/(2σpalm)} =
√

2/Γ(0.5), and hence

2σpalm = E(|Y |)Γ(0.5)/
√

2. The distance Y between the initial location and the location after
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l seconds, of an animal following Brownian motion with rate parameter σ, has distribution

Y ∼ N(0, σ2l), so that E
{
|Y |/(σ

√
l)
}

=
√

2/Γ(0.5) and σ
√
l = E(|Y |)Γ(0.5)/

√
2, and hence

σ = 2σpalm/
√
l. As the average speed of an animal over a period of l seconds is E(|Y |)/l, the

average speed over l seconds of an animal following Brownian motion with rate parameter

σ can be written as σ
√

2/{Γ(0.5)
√
l}.

4. Web Appendix C: Code to reproduce results of the paper

Source code for an R package called LCE paper to fit LCE models, and code to fit to the

porpoise data and to conduct the simulations described in the paper, is available here:

https://github.com/david-borchers/LCE_paper. The package and code is also available

at the Biometrics website on Wiley Online Library.
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