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A Unifying Model for Capture–Recapture and Distance
Sampling Surveys of Wildlife Populations

D. L. BORCHERS, B. C. STEVENSON, D. KIDNEY, L. THOMAS, and T. A. MARQUES

A fundamental problem in wildlife ecology and management is estimation of population size or density. The two dominant methods in this
area are capture–recapture (CR) and distance sampling (DS), each with its own largely separate literature. We develop a class of models that
synthesizes them. It accommodates a spectrum of models ranging from nonspatial CR models (with no information on animal locations)
through to DS and mark-recapture distance sampling (MRDS) models, in which animal locations are observed without error. Between
these lie spatially explicit capture–recapture (SECR) models that include only capture locations, and a variety of models with less location
data than are typical of DS surveys but more than are normally used on SECR surveys. In addition to unifying CR and DS models, the
class provides a means of improving inference from SECR models by adding supplementary location data, and a means of incorporating
measurement error into DS and MRDS models. We illustrate their utility by comparing inference on acoustic surveys of gibbons and frogs
using only capture locations, using estimated angles (gibbons) and combinations of received signal strength and time-of-arrival data (frogs),
and on a visual MRDS survey of whales, comparing estimates with exact and estimated distances. Supplementary materials for this article
are available online.
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1. INTRODUCTION

Estimating animal population density is crucial for success-
ful and efficient management and conservation of wildlife re-
sources. As a complete census is rarely feasible, this usually
requires survey sampling, most often using one of the two dom-
inant survey methods: capture–recpature (CR) or distance sam-
pling (DS; see Schwarz and Seber 1999; Borchers, Buckland,
and Zucchini 2002; Williams, Nichols, and Conroy 2002; Royle
and Dorazio 2008, for overviews of methods). In CR, a series of
detectors (e.g., traps or cameras) are deployed on multiple sam-
pling occasions. The resulting “capture history” of occasions on
which each uniquely identified animal was detected is used to
estimate the probability of detection, and hence account for un-
detected animals. DS requires only a single survey occasion and
uses the distances of detected animals from detectors to estimate
the detection probability and hence account for animals missed.

Both methods sample a subset of the area occupied by the
population of interest and both require some measure of ef-
fective area sampled to estimate animal density. When detec-
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tion is not certain, effective area sampled is obtained by in-
tegrating under an estimated detection probability surface. DS
methods estimate the detection probability surface by using ob-
served distances to detections to estimate detection probability
as a function of distance from detector. CR methods have un-
til recently had no statistically rigorous method for estimating
density, but this changed with the advent of spatially explicit
capture–recapture (SECR) methods (Efford 2004; Borchers and
Efford 2008; Royle and Young 2008; Royle et al. 2013a). SECR
data do not include distances to animal locations; instead SECR
methods use the distances between detectors at which animals
are (and are not) detected to estimate a distance-based detection
probability surface.

As it involves a distance-based detection function, SECR is
closer to DS than is traditional CR, and in fact SECR methods
have borrowed detection function forms from DS. At the same
time, there have been developments in DS that bring it closer
to CR methods. For example, standard DS methods have been
extended to use two independent observers, generating capture
history as well as DS data—a method known as mark recap-
ture distance sampling (MRDS; Manly, McDonald, and Garner
1996; Borchers, Zucchini, and Fewster 1998).

In this article, we unify DS and CR methods and in doing so
create a class of model that includes a range of models that can
be viewed as hybrids of them. Examples include MRDS sur-
veys with distance measurement error and SECR surveys that
contain additional information about animal location, such as
received acoustic signal strength (SS), precise time of acoustic
detection, or estimated bearing to detected animals. We demon-
strate the new class through a series of applications to both real
and simulated datasets.
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2. MOTIVATING PROBLEMS

2.1 Gibbon Survey

Gibbons are difficult to detect visually in forest but can
be detected quite easily acoustically when they make territo-
rial calls. An acoustic survey with human detectors, of north-
ern yellow-cheeked gibbon (Nomascus annamensis) was con-
ducted in northeastern Cambodia by Conservation International
in 2010. The design involved three people standing in a line
spaced approximately 500 m apart, recording estimated angles
to all gibbon groups they heard. Observers who detected a group
comprise the group’s capture history, while the estimated angles
to detected groups provide additional data on group location.
Use of the additional data is shown to improve inference.

2.2 Frog Survey

An acoustic survey of Lightfoot’s moss frog (Arthroleptella
lightfooti) in a water seepage on Table Mountain, South Africa,
was conducted using six microphones in a roughly rectangular
arrangement. The survey is similar to the gibbon survey in that
spatial capture histories consist of the locations of detectors (mi-
crophones) at which each vocalization (frog click) was detected.
The time difference of arrival (TDOA) of the same click at dif-
ferent detectors and the received SS at each detector provide
additional data on animal location. Each of the additional data
types improves inference in this case.

2.3 Minke Whale Survey

As part of the 2001 North Atlantic Sightings Survey (NASS
2001; see Pike et al. 2009, for details), two independent ob-
servers surveyed the same region of sea simultaneously from an
aircraft, recording estimated distances to detected whale cues
(blows). The detectors (the observers) were at the same loca-
tion, and capture histories indicate which observer(s) detected
each cue. Having the detectors at the same location has implica-
tions for SECR analysis that we expand upon below. Additional
data on whale location are contained in the estimated distances
to detected cues, even though they are subject to measurement
error. Use of these data is shown to substantially reduce density
estimation bias.

3. THE MODEL

3.1 Animal Location

We use a generic notion of animal location, specified via
Cartesian coordinates x = (x1, x2). In DS surveys, x is the ac-
tual location of an animal at the time of the survey. If an animal
moves during the survey its location x represents the average of
its positions over the survey. In the context of trapping studies,
these locations have variously been called, “home range cen-
ters,” “centroids,” and “activity centers” (Borchers and Efford
2008; Royle and Young 2008; Royle et al. 2009a). Ideally, we
would like to observe x, but this may not be possible. Below
we derive a likelihood function that accommodates situations in
which location is observed, in which it is partially observed or
observed with error, and in which only locations of the detec-
tors are observed. We develop the likelihood for SECR surveys
without any information on animal locations other than the spa-

tial capture history, and then extend this to include location
observation data.

3.2 Probability Model and Likelihood

Consider a survey of a region with surface area A in which K
detectors are deployed on S occasions. Following Borchers and
Efford (2008), we assume that animals are independently dis-
tributed in this region according to a nonhomogeneous Poisson
process (NHPP) with parameter vector φ and intensity D(x; φ)
at x. We denote the probability that an animal at x is detected
by at least one detector on the survey as p·(x; θ), with unknown
parameter vector θ . It follows that the locations of detected an-
imals, X = (x1, . . . , xn), are realizations of a filtered NHPP
with intensity D(x; φ)p·(x; θ ) at x.

We construct a probability model for the outcomes of a survey
via a product of conditional probabilities, which are developed
below. The first component of the model is the probability of
detecting n animals: P (n; φ, θ ). The second is the probability
density function (pdf) of animal locations, X , conditional on
detection, which we write as fX(X ; φ, θ ).

The third component is the probability of observing the
capture histories #, conditional on detections and detected
animal locations X , which we write as P (# | X ; θ ). Here
# = (ω1, . . . ,ωn), where ωi is the capture history of the ith
animal. The joint pdf of n, X , and # is then

fn,X,!(X, n,#; φ, θ ) = P (n; φ, θ )fX(X ; φ, θ )P (# | X ; θ ).
(1)

We now expand upon each of the terms on the RHS of this
equation, after which we add a term for (possibly noisy) obser-
vations of animal locations.

Note that our model assumes that each animal has a single x
for the survey. This does not mean that animals do not move,
just that x is the center of activity over the whole survey if they
do move. We discuss this further in Section 5.

3.2.1 Capture History Given Location. P (# | X ; θ ). We
define an indicator variable ωiks that is 1 if animal i is detected
by detector k on occasion s and is 0 otherwise, so that the capture
history of animal i on occasion s is ωis = (ωi1s , . . . ,ωiKs) and
its full capture history is ωi = (ωi1, . . . ,ωiS). It is convenient
to define two indicator variables derived from ωiks , as follows:
let ωi·s = 1 if animal i was detected on occasion s and ωi·s = 0
otherwise, and ωi·· = 1 if animal i is detected at all and ωi·· = 0
otherwise. Letting B(ω, p) indicate a Bernoulli probability mass
function for ω, with parameter p, we can write P (# | X ; θ ) as

P (# | X ; θ )

=
n∏

i=1

∏S
s=1 B(ωi·s , p·s(xi ; θ ))Pr(ωis |ωi·s = 1; θ )ωi·s

p·(xi ; θ)
(2)

where p·s(xi ; θ ) = 1 −
∏K

k=1{1 − pks(xi ; θ )} is the probability
that animal i at xi is detected on occasion s, pks(xi ; θ ) is the
probability that animal i is detected by detector k on occasion s,
and p·(xi ; θ ) = 1 −

∏S
s=1{1 − p·s(xi ; θ )} is the inclusion prob-

ability for animal i, that is, the probability that it is detected
at all. P (ωis |ωi·s = 1; θ ) is the probability that on occasion s
detected animal i has capture history ωis . This probability is
different for proximity detectors (which detect animals without
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detaining them) and detectors that hold animals until the end
of the occasion. Appendix A contains the details for each of
these cases. It is also shown in this Appendix that in the case
of proximity detectors with a single occasion and any survey
with a single detector and multiple occasions, P (# | X ; θ ) is
identical to the conditional likelihood of Huggins (1989).

So if the xi’s were observed, we could estimate abundance
using the conditional likelihood approach of Huggins (1989),
with x as the observed covariate vector. This implies that (unlike
conventional CR) estimation is possible from multiple detectors
on one occasion with proximity detectors, as recaptures within
occasion are possible. (Efford, Borchers, and Byrom 2009a, first
noted this fact.)

Because animal location (x) is not observed on conventional
CR studies (only locations of capture are observed), we cannot
take the approach of Huggins (1989). But the location covari-
ate x is observed on MRDS surveys, which involve a single
occasion (S = 1) and typically two observers (K = 2), acting
as independent detectors, recording locations of detections. In
this case, we could use the approach of Huggins (1989). This
is, however, seldom done because on MRDS and other DS sur-
veys with randomized sampler locations, animal locations in the
vicinity of detectors can be treated as random variables with a
known pdf determined by design (namely a uniform distribu-
tion in the plane) and Borchers (1996) showed that using this
pdf of locations in estimation usually improves MRDS estima-
tor properties. Hence, the estimator of Huggins (1989), which
conditions on locations, is not optimal for MRDS estimation and
is generally not used for MRDS data. Instead MRDS inference
is based on likelihood functions that treat X as random. These
involve the conditional distribution of animal locations given
detection, fX(X ; φ, θ ), which we now consider in more detail.

3.2.2 Animal Locations, Given Detection. fX(X ; φ, θ ). As
noted above, MRDS methods assume an independent uniform
distribution of animals within detectable range ( Borchers,
Zucchini, and Fewster 1998). This distribution is consistent
with animals being distributed according to a homogeneous
Poisson process (HPP) in the plane. We make the more gen-
eral assumption that animals occur according to an NHPP, with
intensity D(x; φ) at x. As an animal at x is detected with prob-
ability p·(xi ; θ ), it follows that detected animals occur accord-
ing to a filtered NHPP with intensity D(xi ; φ)p·(xi ; θ ). The
pdf of x given detection is obtained using Bayes’ theorem
as fx(xi ; φ, θ ) = D(xi ; φ)p·(xi ; θ )/λ(φ, θ ), where λ(φ, θ ) =∫
R2 D(x; φ)p·(x; θ ) dx. Assuming independent detections, we

have fX(X ; φ, θ ) =
∏n

i=1 fx(xi ; φ, θ ). The same fX(X ; φ, θ ) is
obtained if we treat the number of animals in the area as fixed at N
and assume that these animals are located independently in space
with probability density π (x; φ) = D(x; φ)/

∫
R2 D(x; φ) dx

at x.

3.2.3 Number of Detections. P (n; φ, θ ). If animals are in-
dependently distributed in the plane according to an NHPP with
parameter vector φ and intensity D(x; φ) at x, and they are in-
dependently detected with probability p·(x; θ ), it follows that n,
the number of detected animals, is a Poisson random variable
with rate parameter λ(φ, θ ). If the number of animals in the area

is a fixed number N, then n is a binomial random variable with
parameters N and p· =

∫
R2 π (x; φ)p·(x; θ ) dx.

3.2.4 Location Observation Given Capture History. f (Y |
X,#; γ ). Suppose now that in addition to observing ωiks

for animal i on occasion s, we also observe a vector yiks =
(yiks1, . . . , yiksM ) containing M different kinds of data, each of
which is a noisy observation of animal location. An example
with M = 2 is an acoustic survey in which detectors are micro-
phones and SS (yiks1) and time of arrival (yiks2) of the sound at a
microphone are recorded. Writing the set of all observations yiks

as Y , we write the conditional pdf of Y given X as fY |X!(Y |
X,#; γ ), where γ is a vector of parameters to be estimated.
In the models we consider, the yiks’s are conditionally indepen-
dent, given X . In general, yiksm may affect detection probability,
and in this case pks(x; θ ) must be replaced by pks(x, yiks ; θ , γ )
in all of the above, and P (n; φ, θ ), fX(X ; φ, θ ), P (# | X ; θ )
become P (n; φ, θ , γ ), fX(X ; φ, θ , γ ), P (# | X ; φ, θ , γ ). (See
Efford, Dawson, and Borchers 2009b, and below.)

Following Efford, Dawson, and Borchers (2009b), we model
the expected value of the random variable ym (dropping
the iks subscript for brevity here), given x, as E(ym | x) =
µm(x) = g−1

m (β0m + β1mhmk(x)). Here gm is a link function,
βm = (β0m,β1m) is a component of γ and the “proxy function”
hmk(x) returns the component of location for which ym is a
proxy, at detector k. For example, if ym is either the observed
distance from detector to animal or the received SS, then hmk(X)
is the true distance from detector k to the animal.

3.3 The Likelihood Function

The joint density of n, X , # and Y is

f (n, X,#, Y ; φ, θ , γ ) = P (n; φ, θ , γ )
× fX!Y (X,!, Y | n; φ, θ , γ ), (3)

where fX!Y (X,!, Y | n; φ, θ , γ ) is the product of fX

(X ; φ, θ , γ ), P (# | X ; φ, θ , γ ) and fY |X!(Y | X,#; γ ). In gen-
eral, X is not observed and this density cannot therefore be
evaluated. We obtain our likelihood by marginalizing over X in
Equation (3):

L(φ, θ , γ | n,#, Y ) = P (n; φ, θ , γ )

×
∫

R2
fX!Y (X,!, Y ; φ, θ , γ ) d X (4)

and we estimate φ, θ , γ by maximizing this equation with re-
spect to φ, θ , γ . We obtain interval estimates using the inverse
of the negative Hessian matrix, which is obtained from numeri-
cal maximization of the likelihood. Model selection can be done
using AIC or any other likelihood-based method.

3.3.1 Estimating Animal Location. Given estimates φ̂, θ̂,

and γ̂ , animal locations can be estimated from #, Y by appli-
cation of Bayes’ Theorem as follows (omitting φ̂, θ̂ , and γ̂ for
brevity and indicating estimates by “hats” on functions):

f̂X|!Y (X|#, Y ) = f̂Y |X!(Y |X,#)P̂ (#|X)f̂X(X)
∫
R2 f̂Y |X!(Y |X,#)P̂ (#|X)f̂X(X) d X

. (5)

Besides being of possible inherent interest, the pdf of animal
locations, f̂X|!Y (X|#, Y ), is useful for illustrating the effect
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of the location observation data Y on the precision of location
estimation, and we use it primarily for this purpose below.

4. ANALYSES OF MOTIVATING PROBLEMS

The continuum of increasingly spatially resolved spatial sam-
pling models covered in this article is illustrated in Figure 1.
SECR models without location observations Y are obtained
by omitting fY |X!(Y | X,#; γ ) from the model. Detection
probability of an animal at distance zero from detectors (de-
noted pks(x(k); θ ), with x(k) being the location of the kth de-
tector) may be constrained to be 1 or not, depending on the
application. DS and MRDS models are obtained by defining
fY |X!(Y | X,#; γ ) to be unity at Y = X and zero elsewhere.
MRDS models generally have K = 2 and S = 1 and allow
pks(x(k); θ ) < 1, while conventional DS models have K = 1,
S = 1 and define pks(x(k); θ ) = 1.

All the case studies below involve proximity detectors and a
single occasion (so we omit subscript s), but the methods apply
equally to multi-catch traps and multiple occasions. We do not
include any covariates or individual random effects (other than
x) in our applications for brevity and because our emphasis is
on illustration of the effects of adding supplementary data. See
Discussion for more on covariates.

All analyses and plots were done with the R library
admbsecr, written by authors of this article (see online sup-
plementary material).

4.1 Gibbon Survey: SECR With Estimated Angles

4.1.1 The Model. Recall that the detectors are observers
standing in a line spaced approximately 500 m apart (see
Figure 2), recording estimated angles to gibbon groups they
heard. We use SECR methods to estimate the density of calling
groups from the locations of the observers who detected the
group, both with and without the angle data.

Here S = 1 and we model the probability of detecting animal
i with location xi in trap k on this occasion as pk1(xi ; θ ) =
exp{−dk(xi)2/(2θ2)}, where θ ≡ θ , dk(xi) is the distance from
observer k (located at coordinates zk = (zk1, zk2)) to animal
i at xi = (xi1, xi2): dk(xi) =

√
(zk2 − xi2)2 + (zk1 − xi1)2. We

assume an HPP for animal locations with D(x; φ) = φ.
Supplementary data comprise recorded angles to animals, so

M = 1 and, dropping subscripts s and m for brevity, we let
yik denote the recorded angle between animal i and detector
k, with respect to some reference direction. The proxy func-
tion hk(xi) is the inverse tangent of (zk2 − xi2)/(zk1 − xi1)).
We assume an identity link in the expectation function so that
E(ym | x) = β0 + β1hk(x), and we assume angles are estimated
without bias at all distances so that β0 = 0 and β1 = 1. A von
Mises distribution with concentration parameter γ is used to
model the angle observation error (γ ≡ γ ). With independent
angle observation errors,

f (Y | X,#; γ ) =
n∏

i=1

K∏

k=1

[
exp {γ cos [yik − hk(xi)]}

2πI0 (γ )

]ωik

, (6)

where I0( ) is the modified Bessel function of order 0.

4.1.2 Results. A total of 123 detections of 77 calls were
made. Using only capture histories (#), the density of calling

gibbon groups is estimated to be 0.83 groups per square kilome-
ter, with a coefficient of variation (CV) of 44%, while using #
and Y it is estimated to be 0.32 with CV of 23%. The differences
arise as a consequence of the estimated detection function scale
parameter θ being much smaller when only # is used (θ̂ =
754 m; CV = 23%) than when Y is also used (θ̂ = 1248 m; CV
= 11%).

To investigate the cause of the differences we plotted esti-
mated locations of calling groups using Equation (5), and we
conducted a simulation study (with 500 simulations) in which
true parameter values were equal to those estimated using #
and Y . Illustrative examples of location contours are shown in
Figure 2 and the simulated sampling distributions of the two
estimators is shown in Figure 3.

The utility of angle data is apparent in Figure 2 in the form
of much tighter contours when # and Y are used than for #
alone. It is also apparent in Figure 3, which shows the “simple”
estimator using only # to be biased (by about 15%), very much
more dispersed and with a mode far below truth (“truth” being
the density used in simulating). (Note that with three detectors
there are only seven possible capture histories and hence the
simple SECR model will estimate all animals to be at one of only
seven locations, while with the angle data, an infinite number of
locations is possible.)

Part of the problem is poor design: with detectors spaced only
500 m apart and scale parameter θ = 1248 the simple estimator
has no information on how detection probability varies at dis-
tances greater than 1000 m—because detections are never more
than 1000 m apart. The angle data overcome this limitation: use
of Y improves estimation.

4.2 Frog Survey: SECR With Arrival Times
and Signal Strength

In this case, we have multivariate location data Y , comprising
the TDOA and SS of detected frog clicks. We have one occasion
(S = 1) and the arrangement of the six microphones (K = 6) is
shown in Figure 4.

We compare estimators using SECR methods with no location
observations, using TDOA data, using SS data, and using both.
We use the same forms for pk(xi ; θ ), dk(xi), and D(x; φ) as
were used in the gibbon survey. Models for TDOA data and SS
are specified below, followed by analysis and simulation results
for each case.

4.2.1 TDOA Observation. As we have only one kind of
supplementary location data (M = 1), we omit the m subscript
and we let yik denote the time of arrival of the ith clicks at
detector k. The proxy function hk(xi) is the distance function
dk(xi) (in meters) used above. We assume normal errors in time
of arrival, and constant variance σ 2

t of this error at all micro-
phones, which is consistent with randomness in time of arrival
being dominated by measurement error. We use an identity link
so that E(yik | xi) = β0i + β1hk(xi), where β0i is the time the
ith sound was generated and β1 is the inverse of the speed of
sound in air (in meters per second).

The time clicks are made is uninformative about location, as
a click made at distance d(x) at time β0 has the same expected
arrival time as one made at distance d(x) + c/β1 at time β0 − c,
for any c. The β0i’s are what (Millar 2011, pp. 188–189) called
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Figure 1. A continuum of increasingly spatially resolved capture–recapture models. Numbers in brackets correspond to subsections of the
article.

incidental parameters, and to eliminate them we can base infer-
ence on the likelihood of time differences of arrival (TDOAs)
from the mean arrival time, conditional on the mean arrival time:

fY |X!(Y | X,#; γ )

∝
n+∏

i=1

(
2πσ 2

t

)(1−mi )/2
exp

{
mi∑

k=1

(δk(xi) − δ̄i)2

−2σ 2
t

}

, (7)

where n+ is the number of clicks detected on more than one
microphone, mi is the number of microphones on which the
ith of these was detected, γ ≡ σ 2

t , δk(xi) = yik − E(yik | xi),
and δ̄i = 1

mi

∑mi

k=1 δk(xi). The same likelihood can be obtained
using a marginal approach, treating the β0s as random effects
(see online supplementary material). For this reason, and for
brevity, we do not explicitly show the conditioning on δ̄is on the
LHS of the equation.

4.2.2 Signal Strength (SS) Observation. The ideas of this
section are taken from Efford, Dawson, and Borchers (2009b).
M = 1 and we let yik denote the received SS at detector k.
The proxy function hk(xi) is as above and we model the ex-
pectation as E(yik|xi) = β0 + β1hk(xi), where β0 is the mean
SS of clicks and β1 is a parameter quantifying SS loss with
propagation distance. (We also tried a log link, E(yik|xi) =
exp{β0 + β1hk(xi)}, but this was found to be inferior in terms
of AIC: +AIC = 18.) As with the time of arrival model, we
assume that yik is normally distributed with constant variance,

σ 2
s , but unlike the time of arrival model, we estimate β0 and

β1 in addition to σ 2
s , so that γ = (β0,β1, σ

2
s ). In addition, be-

cause signals weaker than some specified strength c are fil-
tered out at the acoustic processing stage, detection probability
depends on received SS. We can write the probability of mi-
crophone k detecting signal i made at a distance d(xi) from
it as pk1(x, yk; θ , γ ) = 1 − Fk(c; xi , γ ), where Fk(c; xi , γ ) is
the cumulative distribution function (CDF) of a normal ran-
dom variable with mean exp{β0 + β1hk(xi)} and variance σ 2

s ,
evaluated at c. Then,

fY |X!(Y | X,#; γ ) =
n∏

i=1

mi∏

k=1

Nk(yik; xi , γ )
1 − Fk(c; xi , γ )

, (8)

where mi is as before, the number of microphones on which
click i was detected and Nk(yik; xi , γ ) is a normal pdf with
mean exp{β0 + β1hk(xi)} and variance σ 2

s , evaluated at yik .

4.2.3 TDOA and Signal Strength (SS) Observation. In
this case, M = 2 and we let yik = (yik1, yik2) where yik1

is the time of arrival and yik2 is the received SS of click
i at detector k. Both h1k(xi) and h2k(xi) are the distance
function dk(xi) and we assume the same models as above
so that E( yik|xi) = (β01 + β11h1k(xi), exp{β02 + β12h2k(xi)}),
γ = (β11, σ

2
t ,β02,β12, σ

2
s ), and assuming yik1, yik2 to be
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Figure 2. Example location estimates, given capture, of two different gibbons. Detectors are crosses; circled detectors are those that detected
the gibbon call. Arrows show estimated angles to detections. Dotted lines are the contours of the estimated probability of the group being
contained within the contour, given only the spatial capture history data !. Dashed lines are estimated contours, given only observed angles to
detections. Solid lines are estimated contours, given capture history and angles.
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Figure 3. Smoothed simulated sampling distributions of estimated gibbon call density when only spatial capture history is used in estimation
(“simple”) and when capture history and observed angles are used (“angle”). The down arrow marks true (simulated) density, the horizontal axis
is percentage deviation from true density, and the up arrows are the means of the sampling distributions.

independent we have

fY |X!(Y | X,#; γ )

=
n+∏

i=1

(
2πσ 2

t

)(1−mi )/2

2T
√

mi

exp

{
mi∑

k=1

(δk(xi) − δ̄i)2

−2σ 2
t

}

×
n∏

i=1

mi∏

k=1

Nk(yik; xi , γ )
1 − Fk(c; xi , γ )

. (9)

4.2.4 Comparison of Estimates With and Without TDOA, SS.
A total of 590 detections of 345 frog clicks were made. Using
SECR only, the click density is estimated to be 152.1 clicks per
hectare per minute, with standard error 10.6 (CV = 7.0%). When
SS is used these are reduced to 148.9 and 8.9 (CV = 6.0%), when
TDOA is used they are reduced to 134.5 and 9.5 (CV=7.1%),
and when both SS and TDOA are used, they reduce to 125.7
and 8.0 (CV = 6.4%). While both SS and TDOA reduce the
point estimate of density and its standard error, the effect of SS
on the point estimate is weaker. Investigation at the individual
click level revealed that point estimates of click locations from
the TDOA+SS model tended to agree well with those from the
simple SECR model (but were more precise), while those from

SECR+TDOA often differed substantially. Figure 4 shows an
example for a specific click. The average difference in received
SS for individual clicks was less than 2% of its mean value and it
may be that the distances between microphones were too small
for the contrast in received SS to be very informative about
location. The same is not true of TDOA.

We investigate estimator properties by simulation (500
simulations), using the parameter estimates from the
SECR+SS+TDOA model as truth and mean sample size equal
to that observed on the survey. Simulated sampling distributions
are shown in Figure 5. As expected, the addition of SS or TDOA
reduces bias and improves precision, and there is a further small
improvement in precision when both SS and TDOA data are
used: the CVs for the SECR, SECR+SS, SECR+TDOA, and
SECR+SS+TDOA models are 7.9%, 6.8%, 6.8%, and 6.1%,
respectively.

4.3 Whale Survey: MRDS With Estimated Distances

4.3.1 The Model. We estimate the number of minke whale
cues per hectare over the sampling period from 71 detections ob-
tained on the aerial cue-counting component of the NASS 2001
survey. K = 2 as there were two detectors and S = 1 as they
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Figure 4. Estimated location contours given capture history and SS (left) and capture history and TDOA (right), of a click. Detectors are
crosses; circled detectors are those that detected the frog click. Dotted lines are the contours of the probability density of frog location given only
spatial capture history data !. Dashed lines in the right plot are contours given only TDOA. Solid lines are contours of location given capture
history and SS (left) or capture history and TDOA (right).
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Figure 5. Smoothed simulated sampling distributions of estimated frog click density using only spatial capture history (“simple”), using
capture history and time of arrival (“TDOA”), using capture history and signal strength (“SS”), and using capture history, time of arrival and
signal strength (“joint”). The down arrow marks true density, the horizontal axis is percentage deviation from true density, and the up arrows are
the means of the sampling distributions, expressed as percentage deviation from truth (some are almost coincident).

made one pass over animals. Standard SECR methods cannot
be applied in this case because a distance-dependent detection
function cannot be estimated from detectors at a single loca-
tion. But with the addition of estimated distances to detections
(yik for observer k’s estimate of distance to cue i), estimation is
possible.

MRDS survey models treat distances as being observed with-
out error (see Borchers et al. 2009; Laake et al. 2011, for cue
counting and point transect examples); our model readily al-
lows distance measurement error to be incorporated in MRDS
inference, estimating measurement error from the pairs of
recorded distances of the two observers to recaptures, simul-
taneously with density and detection function parameters. In
this survey, measurement error is substantial, as can be seen
from Figure 6. We estimate cue density allowing probability of
detection at distance zero to be less than unity, both with and
without the assumption of no measurement error. Were we to
enforce certain detection at distance zero, we would have con-
ventional distance sampling (CDS) models with and without
measurement error. (See Borchers et al. 2010, for references to
CDS models with measurement error.)

Following standard practice for DS surveys, we assume
an independent uniform distribution of animals in the plane

(Buckland et al. 2001) and hence use a HPP for animal loca-
tions with D(x; φ) = φ. This leads to the usual cue-counting
pdf for radial distances of detected animals (see online sup-
plementary material). We found it necessary to introduce
detector-specific detection function parameters as one detec-
tor was far more efficient than the other. We use pk1(xi ; θ k) =
logit−1(θk2) exp{−dk(xi)2/(2θ2

k1)}, where θ k = (θk1, θk2) (k =
1, 2) and θ = (θ11, θ12, θ21, θ22). The proxy function h1k(xi) is
the distance function dk(xi). Following Borchers et al. (2009),
we assume unbiased distance estimation with gamma errors,
that is, E(yik|xi) = dk(xi) and

fY |X!(Y | X,#; γ )

=
n∏

i=1

mi∏

k=1

{[
dk(xi)

α

]α

-(α)
}−1

yα−1
ik exp

(
− αyik

dk(xi)

)
, (10)

where yik is the radial distance measurement from observer j to
cue i.

For the case without measurement error, we define fY |X!(Y |
X,#; γ ) to be 1 if Y = X , and zero otherwise.

4.3.2 Results. When distance measurement error is accom-
modated using an SECR model with estimated distance data,
density is estimated to be 1.72 whale cues per hectare over the
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Figure 6. Estimated location contours (dotted) given capture history and recorded location (solid) of a whale detected by one of the two
detectors. Contours are such that 100α% of the density falls between the two contours marked α. The left plot shows locations in perpendicular
and forward distance space, the right curve shows it in radial distance space. Detectors are crosses.
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Figure 7. Smoothed simulated sampling distributions of estimated whale cue density when capture history and exact distances are observed
(“mrds”) and when capture history and estimated distances are used (“dist”). The down arrow marks true density, the horizontal axis is percentage
deviation from true density, and the up arrows are the means of the sampling distributions.

duration of the survey (CV = 18%), and detection probability
at distance zero for the two detectors (pk1(0; θ̂ k), k = 1, 2) to
be 1.0 (CV = 0.01%) and 0.30 (CV = 25%). When using an
MRDS estimator in which distances are assumed to be error-
free (as is the norm for such analyses), density is estimated to
be 1.61 (CV = 17%) and pk1(0; θ̂ k), k = 1, 2 to be 1.0 (CV =
0.01%) and 0.30 (CV = 23%). Figure 6 shows the contours of
estimated location of a whale detected only by detector 2, when
observed distance is assumed error free and when it is estimated
with measurement error.

Formulating the MRDS survey as an SECR estimation prob-
lem with distance measurement error provides a ready means
of accommodating both measurement error and estimation of
pk1(0; θ k)—something that has to date not been done in anal-
yses of DS data, with the exception of a model developed by
Hiby and Lovell (1998) which used distance interval data rather
than continuous distance measurements.

We conducted a simulation study (500 simulations) to in-
vestigate the effect of neglecting measurement error on density
estimates, using the parameters estimated from the model that
incorporates measurement error, with mean sample size of 70,
and with error CVs of 12%, 32%, and 50%. Results for the
32% case are shown in Figure 7. On the 1987 NASS survey
measurement error CV was estimated to be 32% compared to
12% on the 2001 survey—see Borchers et al. (2009). All esti-
mators were found to be positively biased but those from the
MRDS model were (in order of increasing measurement error
CVs) larger by 14%, 34%, and 68%, respectively. Biases us-
ing the SECR model with measurement error were 7.7%, 7.0%,
and 8.2%. As the model estimates six parameters from only 70
observations, we believe this to be small-sample bias.

5. DISCUSSION

We have shown that DS and CR are special cases of a more
general class of spatial sampling model that uses detection lo-
cations to assist in estimating detection probability, and hence
density. We have also shown that in the case of CR surveys, sup-
plementing data on locations of captures with data on animal
location (albeit noisy or incomplete) can substantially improve
inference, particularly when designs are not optimal. Indeed,

when MRDS surveys are considered as SECR surveys, most
have the worst possible design (detectors at the same location)
and inference about density from them would be impossible
without the additional location data.

In the case of DS surveys, the new class of model provides
a ready means for incorporating measurement error into in-
ference, with or without the conventional DS assumption of
certain detection at distance zero. The general model also pro-
vides a framework for incorporating into SECR surveys the
point independence (Laake 1999; Innes et al. 2002; Borchers
et al. 2006) and limiting independence (Buckland, Laake, and
Borchers 2009) methods developed in the DS literature, as a
means of reducing bias due to unmodeled heterogeneity.

5.1 Model Extensions

One topic that we have skirted, for lack of space, is how
covariate data is incorporated into the models. Covariates can
be incorporated in the density model D(x; φ) most naturally via
a log link function, in the scale parameter of detection functions
using a log link, and in the intercept parameter of detection
functions using a logit link. Borchers and Efford (2008) and
Royle et al. (2013b) contained SECR examples with a variety of
explanatory variables and the former includes individual random
effects. Marques and Buckland (2003) dealt with explanatory
variables for DS models, and Borchers, Zucchini, and Fewster
(1998) dealt with them for MRDS models.

We have also not covered any detail of how NHPP or other
models that involve nonuniform animal distribution might be
implemented. Although animal distribution is typically not ho-
mogeneous in space, it is usual to assume uniform spatial distri-
bution in DS analyses (as a consequence of random placement
of detectors), but DS estimators usually use this assumption
only to estimate detection probability (estimating density con-
ditional on detection probability using design-based methods).
They have been found to be relatively robust to violation of
the assumption at this level (see Buckland et al. 2001). Other
methods may not be. Johnson, Laake, and Hoef (2010) imple-
mented DS with an NHPP and Royle et al. (2013b) implemented
a Bayesian version of SECR with an NHPP, with log-linear de-
pendence on environmental covariates in both cases. We believe
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there is a need for more flexible models that are not neces-
sarily monotonic in their dependence on explanatory variables,
and expect that these will be developed in the near future. This
could be achieved using penalized regression splines, in a sim-
ilar way to that in which Gimenez et al. (2006) used them to
model nonmonotonic dependence of survival probability in an
open-population capture–recapture model.

Bayesian and frequentist versions of SECR have been devel-
oped in parallel by different authors. Bayesian inference tends to
be particularly useful in the presence of latent variables or ran-
dom effects—and animal locations are latent variables in SECR
models. However, marginalization over locations involves a sim-
ple two-dimensional integral when locations are independent,
making maximum likelihood inference straightforward. In this
case, both approaches work well and it is largely a matter of per-
sonal preference which is used. Maximum likelihood estimation
has to date proved to be much faster than the MCMC methods
used for Bayesian inference, even when a random effect for un-
modeled heterogeneity in detection probability is incorporated
in the model. It seems likely that the Bayesian approach will
come into its own when there is a more complicated latent vari-
able structure—when there is dependence between latent vari-
ables, for example. In such cases, the marginalization required
for maximum likelihood inference may become infeasible. We
expect that models that do not involve independent distribution
of animal locations (as NHPPs do) will soon be developed, as
animals are often not independently distributed. A simple but
common case is when animals occur in groups; in this case,
animals within the group may not be detected independently of
one another. This can often be dealt with by treating the group as
the detection unit while simultaneously estimating mean group
size if individual animal density is of interest, but in other cases
models for spatial dependence may be required.

5.2 Robustness and Diagnostics

The robustness of estimators within the class of models de-
veloped in this article to failures of assumptions is likely to be
case-specific. DS point estimators of density tend to be robust
to failure of the assumption of independent uniform animal dis-
tribution (see Buckland et al. 2001, p. 36), although interval
estimators are not. Efford, Borchers, and Byrom (2009a) found
SECR point and interval estimators with multi catch traps to be
robust to failure of assumptions of independence and uniformity
(see Table 4, p. 266), and also found density estimates to be little
affected by the form assumed for the detection function.

Goodness-of-fit diagnostics are well developed for DS detec-
tion function estimators, using observed locations (see Buckland
et al. 2004, pp. 385–389). Similar diagnostics when locations are
not observed remain to be developed (for both DS and SECR es-
timators). Borchers and Efford (2008) proposed a Monte Carlo
goodness-of-fit test based on scaled deviance for the overall fit
of SECR models but this does not distinguish between lack of
fit of the animal density model and lack of fit of the detection
model. This is an area that would benefit from further research.

5.3 Animal Movement

The methods of this article assume a single location (activity
center) for each animal over the whole survey, but this does not

imply or require that animals do not move during the survey.
Nor does it require that movement between occasions on a multi
occasion survey (S > 1) be modeled; providing that either (a)
single- or multi-catch traps are used, or (b) occasions are long
enough that the distribution of points that an animal visits over
the duration of an occasion is the same as that over the duration
of the whole survey. In the former case, there is no information
on animal movement within occasions and the location is by def-
inition the center of activity across occasions. In the latter case,
the center of activity across occasions is identical to that within
occasions. If proximity detectors are used and (b) above does
not hold, then the detection functions within occasion will differ
from those across occasions (typically having shorter ranges for
shorter occasions). Models that do not allow for this are mis-
specified and may produce biased estimates. This problem can
usually be avoided by having a design with occasions that are
sufficiently long.

When activity centers move between occasions, an additional
model layer for activity center movement will be required in
general. The simplest such model is probably one in which
the activity centers on each occasion are independent random
effects with mean equal to an animal’s activity center across
all occasions. But we believe that this will not be an adequate
model in many applications, because activity centers on consec-
utive occasions are likely to be correlated. If activity centers are
observed on some (but not all) occasions, the methods of Lan-
grock and King (2013) and of references therein may be useful
for modeling activity centers that were not observed, conditional
on those that were. (If animal activity centers are the same for
all occasions and some but not all are observed, the likelihood
is like Equation (4), but with integration over only those centers
that were not observed.)

5.4 Recapture Uncertainty

A final important issue that remains to be resolved for this
class of model, and indeed for many CR models of any sort, is
how to deal with uncertain recapture identification, as this can be
fraught with uncertainty when animals are not physically tagged.
This general problem was addressed by Link et al. (2010) for
example, while Bonner (2013) and work referenced therein ad-
dressed the issue when there are multiple sources of individual
identification. None of these methods explicitly use location in-
formation and we expect that methods that use location data to
quantify the probability that detections are recaptures will be
useful, as they were in the MRDS analysis of Hiby and Lovell
(1998).

APPENDIX A: VARIETIES OF P(# | X ; θ )

Multi-catch traps detain animals until the end of the sampling occasion
in which they are trapped (and do not fill up). Proximity detectors are
detectors that do not detain animals and therefore allow captures of the
same animal on different traps within occasions. In some proximity
detector applications, it is possible to detect the same animal more than
once at the same detector. In this case, either binary capture histories
of the sort used in the body of this article can be used or the capture
frequency of each animal at each trap on each occasion can be recorded.

In the case of multi catch traps, all but one of ωi1s , . . . , ωiKs are
zero and Pr(ωis |ωi·s = 1; θ ) is a multinomial distribution with index
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1 and probabilities pks(xi ; θ )/
∑

k pks(xi ; θ ) (k = 1, . . . , K). Model-
ing pks(xi ; θ ) using a competing hazard formulation (see Borchers and
Efford 2008), pks(xi ; θ ) = rks(xi ; θ )p·s(xi ; θ ), where rks(xi ; θ ) is de-
fined as hks(xi ; θ )/ h·s(xi ; θ ), the relative hazard of detection at trap
k on occasion s for an animal at xi , hks(xi) is the detection hazard
at trap k and h·s(xi) =

∑
k hks(xi) is the total hazard on the occasion.

Hence,
∑

k pks(xi ; θ ) = p·s(xi ; θ ) and the multinomial probabilities
are r1s(xi ; θ ), . . . , rKs(xi ; θ ).

In the case of proximity detectors with binary ωiks , Pr(ωis |ωi·s =
1; θ ) is written as

∏K
k=1 B(ωiks , pks(xi ; θ ))/p·s(xi ; θ). In the case of

proximity detectors with frequency data in which ωiks is the fre-
quency of detection on detector k on occasion s, Royle et al. (2009b)
proposed a Poisson model for ωi·s , such that Pr(ωis |ωi·s = 1; θ ) is∏K

k=1 Po(ωiks , λ0pks(xi ; θ ))/p·s(xi ; θ ), where Po(x, λ) is a Poisson dis-
tribution with parameter λ.

With binary capture histories, Equation (2) reduces to Equation (A.1)
below for proximity detectors when K = 1 and it reduces to Equation
(A.2) with either kind of detector when S = 1.

P(K=1)(# | X ; φ, θ ) =
n∏

i=1

∏S
s=1 B(ωi1s , p1s(xi ; θ))

p·(xi ; θ )
(A.1)

P(S=1)(# | X ; φ, θ ) =
n∏

i=1

∏K
k=1 B(ωik1, pk1(xi ; θ ))

p·(xi ; θ )
. (A.2)

These equations have the same form as the conditional likelihood of
Huggins (1989). Equation (A.1) corresponds to the conventional CR
case—in which there is usually more than one trap but all traps together
are treated as a single composite trap, effectively with one location.

SUPPLEMENTARY MATERIALS

Conventional point transect likelihood as a special case;
Derivation of random effect TDOA distribution; Details of the
R library admbsecr.

[Received February 2013. Revised February 2014.]

REFERENCES
Bonner, S. (2013), “Response to: A New Method for Estimating Animal Abun-

dance With Two Sources of Data in Capture-Recapture Studies,” Methods
in Ecology and Evolution, 4, 585–588. [203]

Borchers, D. L. (1996), “Line Transect Abundance Estimation With Uncertain
Detection on the Trackline,” PhD Thesis, University of Cape Town, Cape
Town. [197]

Borchers, D. L., Buckland, S. T., and Zucchini, W. (2002), Estimating Animal
Abundance: Closed Populations, London: Springer. [195]

Borchers, D. L., and Efford, M. G. (2008), “Spatially Explicit Maximum Like-
lihood Methods for Capture-Recapture Studies,” Biometrics, 64, 377–385.
[195,196,202,203]

Borchers, D. L., Laake, J. L., Southwell, C., and Paxton, C. G. M. (2006),
“Accommodating Unmodelled Heterogeneity in Double-Observer Distance
Sampling Surveys,” Biometrics, 62, 372–378. [202]

Borchers, D. L., Marques, T. A., Gunlaugsson, Th., and Jupp, P. (2010), “Esti-
mating Distance Sampling Detection Functions When Distances are Mea-
sured With Errors,” Journal of Agricultural, Biological and Environmental
Statistics, 15, 346–361. [201]

Borchers, D. L., Pike, D., Gunlaugsson, Th., and Vikingson, G. (2009), “Minke
Whale Abundance Estimation From the NASS 1987 and 2001 cue Counting
Surveys Taking Account of Distance Estimation Errors,” North Atlantic
Marine Mammal Commission Publications, 7, 201–220. [201,202]

Borchers, D. L., Zucchini, W., and Fewster, R. (1998), “Mark-Recapture Models
for Line Transect Surveys,” Biometrics, 54, 1207–1220. [195,197,202]

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D.
L., and Thomas, L. J. (2001), Introduction to Distance Sampling, Oxford:
Oxford University Press. [201,202,203]

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L.,
and Thomas, L. J. (2004), Advanced Distance Sampling, Oxford: Oxford
University Press. [203]

Buckland, S. T., Laake, J. L., and Borchers, D. L. (2009), “Double-Observer
Line Transect Methods: Levels of Independence,” Biometrics, 66, 169–177.
[202]

Efford, M. G. (2004), “Density Estimation in Live-Trapping Studies,” Oikos,
106, 598–610. [195]

Efford, M. G., Borchers, D. L., and Byrom, A. E. (2009a), “Density Estima-
tion by Spatially Explicit Capture-Recapture: Likelihood-Based Methods,”
in Modeling Demographic Processes in Marked Populations, eds. D. L.
Thompson, E. G. Cooch, M. J. Conroy, New York: Springer, pp. 255–269.
[197,203]

Efford, M. G., Dawson, D. K., and Borchers, D. L. (2009b), “Population Density
Estimated From Locations of Individuals on a Passive Detector Array,”
Ecology, 90, 2676–2682. [197,199]

Gimenez, O., Crainiceanu, C., Barbraud, C., Jenouvrier, S., and Morgan, B. J.
T. (2006), “Semiparametric Regression in Capture–Recapture Modelling,”
Biometrics, 62, 691–698. [203]

Hiby, L., and Lovell, P. (1998), “Using Aircraft in Tandem Formation to Estimate
Abundance of Harbour Porpoise,” Biometrics, 54, 1280–1289. [202,203]

Huggins, R. M. (1989), “On the Statistical Analysis of Capture Experiments,”
Biometrika, 76, 133–140. [197,204]

Innes, S., Heide-Jorgensen, M. P., Laake, J. L., Laidre, K. L., Cleator, H. J.,
Richard, P., and Stewart, R. E. A. (2002), “Surveys of Belugas and Narwhals
in the Canadian High Arctic in 1996,” NAMMCO Scientific Publications, 4,
169–190. [202]

Johnson, D. S., Laake, J. L., and Hoef, J. M. Ver. (2010), “A Model-Based
Approach for Making Ecological Inference From Distance Sampling Data,”
Biometrics, 66, 310–318. [202]

Laake, J. L. (1999), “Distance Sampling With Independent Observers: Reduc-
ing Bias From Heterogeneity by Weakening the Conditional Independence
Assumption,” in Marine Mammal Survey and Assessment Methods, eds. G.
W. Amstrup, S. C. Garner, J. L. Laake, B. F. J. Manly, L. L. McDonald, and
D. G. Robertson, Rotterdam: Balkema, pp. 137–148. [202]

Laake, J. L., Collier, B. A., Morrison, M. L., and Wilkins, R. N. (2011), “Point-
Based Mark-Recapture Distance Sampling,” Journal of Agricultural, Bio-
logical and Environmental Statistics, 16, 389–408. [201]

Langrock, R., and King, R. (2013), “Maximum Likelihood Estimation of Mark-
Recapture-Recovery Models in the Presence of Continuous Covariates,”
Annals of Applied Statistics, 7, 1709–1732. [203]

Link, W. A., Yoshizaki, J., Bailey, L. L., and Pollock, K. H. (2010), “Uncovering
a Latent Multi-Nomial: Analysis of Mark-Recapture Data With Misidenti-
fication,” Biometrics, 66, 178–185. [203]

Manly, B. F. J., McDonald, L. L., and Garner, G. W. (1996), “Maximum Like-
lihood Estimation for the Double-Count Method With Independent Ob-
servers,” Journal of Agricultural, Biological and Environmental Statistics,
1, 170–189. [195]

Marques, F. F. C., and Buckland, S. T. (2003), “Incorporating Covariates Into
Standard Line Transect Analyses,” Biometrics, 59, 924–935. [202]

Millar, R. B. (2011), Maximum Likelihood Estimation and Inference, Chichester,
UK: Wiley. [198]

Pike, D. G., Paxton, C. G. M., Gunnlaugsson, Th., and Vikingsson, G. A. (2009),
“Trends in the Distribution and Abundance of Cetaceans From Aerial Sur-
veys in Icelandic Coastal Waters, 1986–2001,” NAMMCO Scientific Publi-
cations, 7, 117–142. [196]

Royle, J. A., Chandler, R. B., Sollman, R., and Gardner, B. (2013a), Spatial
Capture-Recapture, Boston: Academic Press. [195]

Royle, J. A., Chandler, R. B., Sun, C. C., and Fuller, A. K. (2013b), “Integrating
Resource Selection Information With Spatial Capture-Recpature,” Methods
in Ecology and Evolution, 4, 520–530. [202]

Royle, J. A., and Dorazio, R. M. (2008), Hierarchical Modeling and Inference
in Ecology, London: Academic Press. [195]

Royle, J. A., Karanth, K. U., Gopalaswamy, A. M., and Kumar, N. S. (2009a),
“Bayesian Inference in Camera-Trapping Studies for a Class of Spatial
Capture-Recapture Models,” Ecology, 90, 3233–3244. [196]

Royle, J. A., Nichols, J. D., Karanth, K. U., and Gopalaswamy, A. M. (2009b),
“A Hierarchical Model for Estimating Density in Camera-Trap Studies,”
Journal of Applied Ecology, 46, 118–127. [204]

Royle, J. A., and Young, K. V. (2008), “A Hierarchical Model for Spatial
Capture–Recapture Data,” Ecology, 89, 2281–2289. [195,196]

Schwarz, C. J., and Seber, G. A. F. (1999), “Estimating Animal Abundance:
Review III,” Statistical Science, 14, 427–456. [195]

Williams, B. K., Nichols, J. D., and Conroy, M. J. (2002), Analysis and Man-
agement of Animal Populations, London: Academic Press. [195]

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f S

t A
nd

re
w

s]
 a

t 0
1:

27
 1

3 
M

ay
 2

01
5 


