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Conventional distance sampling adopts amixed approach, usingmodel-basedmethods
for the detection process, and design-based methods to estimate animal abundance in
the study region, given estimated probabilities of detection. In recent years, there has
been increasing interest in fully model-based methods. Model-based methods are less
robust for estimating animal abundance than conventional methods, but offer several
advantages: they allow the analyst to explore how animal density varies by habitat or
topography; abundance can be estimated for any sub-region of interest; they provide tools
for analysing data from designed distance sampling experiments, to assess treatment
effects. We develop a common framework for model-based distance sampling, and show
how the variousmodel-basedmethods that have been proposed fit within this framework.
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1. INTRODUCTION

Distance sampling is a suite of methods for estimating animal abundance (Buckland et al.
2001). Surveys are conducted on a set of plots, selected from a wider study region according
to some randomized scheme (usually a random systematic sample or stratified random
systematic sample). The two most commonly used methods are line transect sampling, for
which the plots are long, narrow strips, and an observer travels along each strip centreline,
recording the distance from the line of each animal detected; and point transect sampling,
for which the plots are circles, and the observer searches for animals from the centre of each
circular plot, recording the distance of each detected animal from the centre point.

Conventional distance sampling is a mix of design-based and model-based methods.
Models are proposed for the detection function g(y), which is the probability of detection
of an animal, expressed as a function of its distance y from the line or point, and these are
fitted to the distance data usingmaximum likelihoodmethods. This component of estimation
is therefore model-based. However, the likelihood maximized is not the full likelihood, but
a conditional likelihood: the likelihood of the distances y, conditional on the number n of
animals detected.
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Conventional distance sampling exploits design-based methods in two ways. First, we
rely on the design to ensure that on average, animals are distributed uniformly over the
sample plots. The distances y are then sufficient to estimate g(y), and hence abundance on
the plots, with the additional assumption that g(0) = 1; that is, an animal at distance zero
(i.e. on the line or at the point) is detected with certainty. Given estimates of abundance on
the plots, together with a randomized design, we can then extrapolate to the wider study
area using design-based methods, to estimate total abundance.

Conventional distance sampling estimators have proven very effective for estimating
abundance (Fewster and Buckland 2004). However, full model-based methods offer greater
flexibility: they can be used to analyse designed experiments that use distance sampling
methods, for example to test whether animal densities on treatment plots differ significantly
from those on control plots; they allow animal density to be modelled as a function of spatial
variables that reflect for example habitat or climate; abundance can be estimated for any
sub-region of interest.

Several model-based methods have been proposed. Borchers et al. (2002) specified a
binomial model for the number n of animals detected out of a population of size N , and
multiplied the resulting likelihood by the line transect or point transect likelihood arising
from the detection function from conventional distance sampling. Royle and Dorazio (2008)
also adopted this approach for line transect sampling. Plot abundance and plot count mod-
els were developed by Royle et al. (2004), by Buckland et al. (2009) and by Oedekoven
et al. (2013, 2014). These enabled data from designed distance sampling experiments to be
analysed.

Stoyen (1982) and Högmander (1991) were the first to consider point process models
for line transect sampling, an approach developed further by Hedley and Buckland (2004),
who specified a non-homogeneous Poisson process model for n to develop a spatial distance
sampling model. Johnson et al. (2010) provided software for fitting such models, andMiller
et al. (2013) provided software for a simpler approach suggested by Hedley and Buckland
(2004) based on generalized additive models.

In this paper, we show how the various full model-based methods relate to each other,
and how they fit within a more general framework. This framework allows distances of
detected animals from the line or point to be grouped (interval) or exact, includes Poisson,
binomial and multinomial models, and allows additional covariates (other than distance) to
be included for modelling both detection probability and counts. For counts, the covariates
are assumed to be recorded at the plot level or higher, whilst for detection probability,
covariates may be at the individual animal level. In Sect. 2.1, we consider the model-based
conventional distance sampling methods of Borchers et al. (2002) for exact and grouped
data. In Sect. 2.2, we add covariates other than distance to the detection function model
(model-based multiple-covariate distance sampling), and in Sect. 2.3, we consider model-
based mark-recapture distance sampling. In Sect. 3.1, we develop plot count models, and
we show that these are equivalent to the plot abundance models of Royle et al. (2004)
in Sect. 3.2. We show useful generalizations incorporating random effects in Sect. 4, and
present a case study in Sect. 5. In Sect. 6, we provide a brief summary of other examples,
and discuss the pros and cons of a fully model-based approach to distance sampling, relative
to the more usual hybrid approach.
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2. NON-SPATIAL MODEL-BASED METHODS

2.1. MODEL-BASED CONVENTIONAL DISTANCE SAMPLING

In model-based distance sampling, we introduce a likelihood component for sample size
(i.e. number of detected animals) n. The objective is to estimate mean animal density or
animal abundance in the study area based on a sightings survey conducted along a sample
of lines or at a sample of points, distributed according to a randomized design (typically a
systematic random sample, possibly with stratification).

2.1.1. Exact Distance Data

Suppose that 0 ≤ y ≤ w, where w is the half-width of the strip (line transect sampling)
or the radius of the circle (point transect sampling). (In the case of line transect sampling,
we fold the distances over, so that distances to the left of the line are pooled with distances
to the right of the line.) Denote the full likelihood by Ln,y . We assume that this can be
expressed as the product of two likelihoods, one Ln corresponding to sample size n, and
the other Ly corresponding to the distances y. Then we can write (Borchers and Burnham
2004)

Ly =
n∏

i=1

fy(yi ) =
n∏

i=1

g(yi )πy(yi )

Pa
, (1)

where fy(y) is the probability density function of distance y, g(y) is the probability that an
animal at distance y from the line or point is detected, πy(y) is the distribution of distances
of animals from the line or the point, irrespective of whether they are detected and Pa is the
probability that an animal on the plot is detected, unconditional on its distance y. Thus we
have

Pa =
∫ w

0
g(y)πy(y) dy (2)

which is the normalizing constant in (1) to ensure that fy(y) is a valid probability density
function.

Given random placement of plots, then πy(y) = 1/w, independent of y, for line transect
sampling, and πy(y) = 2y/(w2) for point transect sampling (Borchers and Burnham 2004).

We need a model for sample size n. A natural model is the binomial distribution:

Ln =
(
N
n

)
(γc Pa)

n(1 − γc Pa)
N−n, (3)

where N is the number of animals in the study region and γc is the probability that an animal
within the study region is on one of the surveyed plots.

The full likelihood is thus

Ln,y = Ln × Ly =
(
N
n

)
(γc)

n (1 − γc Pa)
N−n

n∏

i=1

g(yi )πy(yi ). (4)
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This formulation is given by Borchers et al. (2002). For the case of line transect sampling,
Royle and Dorazio (2008) give the same formulation, and refer to it as individual-based
modelling, because each detected animal i has its own detection distance yi . We can proceed
to inference adopting for example maximum likelihood or Bayesian methods.

If instead we adopt a Poisson model for n, we can have a spatial distance sampling
model. Adopting a non-homogeneous Poisson process model, we can write the likelihood
as (Hedley and Buckland 2004)

Ln,l = exp [−μA]
n∏

i=1

D(li )g(y(li ))/n! (5)

for n = 1, 2, . . . , where li is the location of detected animal i , y(li ) is its distance from
the transect, g(y(li )) is the corresponding probability of detection, D(li ) is the density of
animals at location li and μ(A) = ∫

A D(l)g(y(l)) dl, where the integral is over the entire
survey region A.

2.1.2. Grouped Distance Data

If the distances y are grouped into intervals defined by cutpoints c0 = 0, c1, . . . , cJ = w,
then we can still define Ln as above, but we replace Ly by (Borchers and Burnham 2004)

Lm =

⎛

⎜⎜⎜⎝
n!

J∏
j=1

m j !

⎞

⎟⎟⎟⎠

J∏

j=1

f
m j
j , (6)

where m j is the number of detections in distance interval j , with
∑J

j=1m j = n, and

f j =
c j∫

c j−1

f (y) dy =

c j∫
c j−1

g (y) πy(y)dy

Pa
. (7)

The full likelihood is now Ln,m = Ln × Lm .

2.2. MODEL-BASED MULTIPLE-COVARIATE DISTANCE SAMPLING

2.2.1. Exact Distance Data

If our model for the detection function g(y) includes a scale parameter σ , we may model
the scale parameter as a function of covariates. Adopting the approach of Marques and
Buckland (2003), we write for observation i

σ(zi ) = exp (β0 + β1z1i + β2z2i + · · · ) , (8)

where zi = (z1i , z2i , . . . )′ are the covariate values associated with observation i , i =
1, . . . , n.
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The full likelihood now consists of three components: the likelihood for the count model
(3), the likelihood for the distribution of covariates z that are part of the detection model
and the likelihood for the observed distances y given covariates z: Ln × Lz × Ly|z . Given
random line or point placement, we can assume that the joint distribution πy,z(y, z) =
πy|z(y|z)πz(z) = πy(y)πz(z); that is that the distribution of distances y for all animals on
sample plots (whether detected or not) is independent of that of covariates z. This allows us
to factorize the joint likelihood Lz,y = Lz × Ly|z as two components, the first of which is
a function of z alone, and the second a function of y alone (Borchers and Burnham 2004).
We now have

Ln =
(
N
n

)
(γc Pa)

n (1 − γc Pa)
N−n , (9)

Lz =
n∏

i=1

Pa(zi )πz(zi )
Pa

(10)

and

Ly|z =
n∏

i=1

f (yi |zi ) =
n∏

i=1

g(yi , zi )πy(yi )

Pa(zi )
, (11)

where

Pa(zi ) =
∫ w

0
g(y, zi )πy(y) dy (12)

and

Pa =
∫

z
Pa(z)πz(z) dz. (13)

Thus we have the full likelihood

Ln,z,y = Ln × Lz × Ly|z =
(
N
n

)
(γc)

n (1 − γc Pa)
N−n

n∏

i=1

πz(zi )g(yi , zi )πy(yi ). (14)

In general, the integral of (13) will be a multiple integral. Inference is now more prob-
lematic because πz(z), unlike πy(y), is unknown, and so we need to specify a model for it.
Where we have just a single covariate, and one for which we can specify a suitable model,
then this approachmay be useful. However, with multiple covariates, and the need to specify
a model for their joint distribution, this approach is unappealing. In this circumstance, we
can instead simply maximize the conditional likelihood Ly|z . If we need to estimate abun-
dance, then we can use an estimate of Pa(zi ) and hence estimate the inclusion probability
γc Pa(zi ) for detection i (Borchers and Burnham 2004). If this probability were known, then
the Horvitz–Thompson estimator of population size would be
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N̂ =
n∑

i=1

1

γc Pa(zi )
. (15)

We obtain an estimate P̂a(zi ) by maximizing the likelihood component Ly|z , giving the
following Horvitz–Thompson-like estimator:

N̂ =
n∑

i=1

1

γc P̂a(zi )
. (16)

If animals occur in groups (termed ‘clusters’ in the distance sampling literature), and the
size of the i th detected group is si (which may or may not be one of the covariate values in
zi ), then the Horvitz–Thompson-like estimator is

N̂ =
n∑

i=1

si

γc P̂a(zi )
. (17)

2.2.2. Grouped Distance Data

When covariates are only recorded at plot level or higher (e.g. stratum), we will consider
the analysis of groupeddistance data under plot countmodels. If there are covariates recorded
at the level of the individual animal, then we may replace (7) by

fi j =
c j∫

c j−1

f (y|zi ) dy =

c j∫
c j−1

g (y|zi ) πy(y)dy

Pa(zi )
, (18)

and replace (6) by

Lm =
J∏

j=1

m j∏

i=1

fi j . (19)

2.3. MODEL-BASED MARK-RECAPTURE DISTANCE SAMPLING

In mark-recapture distance sampling, two observers survey the same plots, recording
which individuals were seen by both and which by only one or the other. This allows us
to remove the assumption that all animals on the line or at the point are detected. We
can extend multiple-covariate distance sampling full-likelihood methods to mark-recapture
distance sampling simply by including an additional likelihood component. We denote the
capture history of an animal by the vector ω, comprising two elements, each of which is
zero or one. For an animal detected by observer 1 but not observer 2, ω = (1, 0), while for
an animal detected by observer 2 but not observer 1, ω = (0, 1). For an animal detected by
both observers, ω = (1, 1). Note that the capture history ω = (0, 0) is not observed, and so
does not appear in the mark-recapture component of the likelihood. We can now write
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Lω =
n∏

i=1

Pr (ωi |detected) =
n∏

i=1

Pr (ωi )

p·(yi , zi )
, (20)

where

Pr (ωi = (1, 0)) = p1(y, z)
(
1 − p2|1(y, z)

)
,

Pr (ωi = (0, 1)) = p2(y, z)
(
1 − p1|2(y, z)

)
,

Pr (ωi = (1, 1)) = p1(y, z)p2|1(y, z) = p2(y, z)p1|2(y, z).

Here, p·(yi , zi ) is the probability that an animal at distance yi from the line or point and
with covariates zi is detected by at least one observer, and is equivalent to g(yi , zi ) of the
previous section. Note however that p·(0, zi ) is not assumed to be one. Further, p1(y, z) is
the unconditional probability that observer 1 detects an animal at distance y and covariates
z, while p1|2(y, z) is the probability of detection, conditional on the animal having been
detected by observer 2, with equivalent expressions for observer 2. Models for these prob-
abilities are proposed by Laake and Borchers (2004), Borchers et al. (2006) and Buckland
et al. (2010).

The full likelihood is given by Ln,ω,z,y = Ln × Lω × Lz × Ly|z . Again, we usually
avoid the problem of specifying a suitable model for πz(z) by maximizing the conditional
likelihood Lω ×Ly|z and estimating abundance using a Horvitz–Thompson-like estimator.

3. PLOT-BASED MODELS

For designed distance sampling experiments, we wish to test for treatment effects on
counts, while accounting for variation in detectability. For this, we need plot-based models.

3.1. PLOT COUNT MODELS

3.1.1. Exact Distance Data

So far, we have ignored the spatial information in our data. Denote the unknown number
of animals on plot k (k = 1, . . . , K ) by Nk , and the number of animals detected on plot k
by nk , where

∑K
k=1 nk = n. Here we define plot k to mean the strip of half-width w and

length Lk centred on line k (line transect sampling) or the circle of radiusw centred on point
k (point transect sampling). We denote the area of plot k by ak , so that ak = 2wLk (line
transect sampling) or ak = πw2 (point transect sampling).

We consider twomodels for the plot counts nk : themultinomial,which involves extending
the binomial approach of Sect. 2.1, and the Poisson.

Two new issues arise when we move to plot count models. The first is that we need
to decide whether we are interested in inference about total abundance N , as in Sect. 2.1,
or whether we only wish to compare densities among the plots, as occurs in a designed
distance sampling experiment. In the second case, we wish to restrict inference to the plots,
for example to compare a treatment with a control. The second new issue is that we may
have covariates at the plot level or higher, but we may also have individual covariates
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(i.e. covariates whose values are recorded for each individual detection). If the detection
function depends only on plot-level covariates, we can condition on the covariates, and
there is no advantage in terms of estimating probability of detection to adding a component
to the likelihood for these covariates. However, if the detection function also (or instead)
depends on individual covariates, then the detections on a given plot are biased towards those
taking covariate values that increase the probability of detection. Thus we need to include
a component in the likelihood corresponding to the distribution of individual covariates.

In Sect. 2.1, formodel-based conventional distance sampling, wewrote the full likelihood
as Ln,y = Ln × Ly . We can again take Ly as given in (1). In place of Ln , we write L{nk }
where {nk} is the set of plot counts nk , k = 1, . . . , K . Extending the binomial likelihood of
(3), we obtain the multinomial model:

L{nk } = N !
∏K

k=1 nk !(N − n)!

[
1 −

K∑

k=1

αk Pk

]N−n K∏

k=1

(αk Pk)
nk , (21)

where αk is the probability that an animal is located on plot k, and Pk is the probability
that an animal is detected, given that it is on plot k. (When K = 1, (21) reduces to (3).)
Under a uniform density model, αk is simply the area of plot k divided by the total study
area. To model how density varies through the study area, we can express αk as a function
of plot covariates xk : αk ≡ πx (xk). For model-based conventional distance sampling (with
no covariates other than distance in the detection function), Pk = Pa = ∫ w

0 g(y)πy(y) dy,
the same for every plot. If the detection function is a function of plot covariates xk but not
of individual covariates (other than distance y), then

Pk =
∫ w

0
g(y, xk)πy(y) dy, (22)

and if it is also a function of individual covariates z (i.e. model-based multiple-covariate
distance sampling), then we must specify a model for the probability density function πz(z)
of z in the population, and take the expectation over this density:

Pk =
∫ w

0

∫

z
g(y, z, xk)πz(z)πy(y) dz dy. (23)

In the latter case, to complete the full likelihood, instead of taking Ly , we would multiply
L{nk } by Lz × Ly|z , where Lz is from (10) and Ly|z is from (11).

If we wish to restrict inference to the plots, as occurs in designed experiments using
distance sampling, then we can replace (21) by

L{nk } = Nc!∏K
k=1 nk !(Nc − n)!

[
1 −

K∑

k=1

αk Pk

]Nc−n K∏

k=1

(αk Pk)
nk , (24)

where Nc = ∑K
k=1 Nk is total abundance on the plots.
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Poisson models offer a simpler alternative when inference is restricted to the plots:

L{nk } =
K∏

k=1

λ
nk
k exp[−λk]

nk ! , (25)

where for model-based conventional distance sampling,

λk = E(nk) = E(Nk) × Pa = exp

⎛

⎝
Q∑

q=1

xqkβq + loge(ak Pa)

⎞

⎠ (26)

so that the vector xk , with qth element xqk , represents covariates recorded at the plot level.
Equation (26) defines a generalized linear model with log link function and an offset

term of loge(ak Pa). The complication is that Pa is an unknown parameter. This suggests a
two-stage approach: maximizeLy , to give an estimate of Pa, and then substitute our estimate
P̂a into the offset, andmaximizeL{nk } using standard generalized linear modelling software.
Melville and Welsh (2014) adopted this strategy. The method fails to take account of the
uncertainty in P̂a at the second stage. One way to propagate the uncertainty from stage 1
into stage 2 is to use a bootstrap (Buckland et al. 2009). Williams et al. (2011) described
a less computer-intensive and more stable method, but given its complexity, and the fact
that the two-stage approach does not in general give maximum likelihood estimates of the
parameters, a full likelihood approach, in which Pa is just treated as another parameter to
estimate, seems preferable:

L{nk },y = L{nk } × Ly =
K∏

k=1

λ
nk
k exp[−λk]

nk ! ×
n∏

i=1

g(yi )πy(yi )

Pa
. (27)

If we have individual covariates z in the detection function, then the full likelihood is
L{nk },z,y = L{nk } × Lz × Ly|z where Lz is given by (10) and Ly|z by (11). Further, Pk ,
the probability of detection on plot k, now varies by plot, so that our model for plot counts
becomes

λk = E(nk) = E(Nk) × Pk = exp

⎛

⎝
Q∑

q=1

xqkβq + loge(ak Pk)

⎞

⎠ . (28)

When the detection function depends on plot-level covariates but not on individual covari-
ates, then we do not need to specify a distribution for these covariates; instead, we simply
form the likelihood conditional on the covariate values, as for the multinomial model.

Note that if we adopt a spatial non-homogeneous Poisson process distance sampling
model, we can write

λk =
∫

k
D(l)g(y(l)) dl, (29)

where the integral is over plot k (compare with μA of (5)). In this case, for plot k, πy(y)
is the integral of D(l) across the sections of plot at distance y from the line or point (two
parallel incremental strips for line transect sampling, and an incremental annulus for point
transect sampling), divided by the integral across the whole plot. In practice, if plots are
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small, we are likely to approximate this by assuming that πy(y) is uniform (line transects)
or triangular (point transects). If a fully spatial model is preferred, it would be sensible to
record location li of detection i , and not just its distance yi from the line or point. A point
process likelihood of the form given by Hedley and Buckland (2004) might then be used.

We can specify models for λk of the form of (26), where the covariates xk (assumed to
be at the plot level or higher) might define the design in the case of a designed distance
sampling experiment, or might be spatial covariates for a spatial model, or might simply be
any explanatory variables that are potentially useful formodelling animal density. Generally,
we would define x1k = 1 for all k, so that β1 is an intercept term. We can also replace linear
terms by smooth terms to give greater flexibility (e.g. Hedley andBuckland 2004). Instead of
maximizing the two likelihood components separately, we can maximize the full likelihood,
or use Bayesian methods to draw inference on all unknown parameters. Thus the parameter
Pk in the offset, which for the two-stage approach was estimated in stage 1 then treated
as known in stage 2, is now a function of the detection function parameters (below), and
estimated along with all other parameters in a single step. Oedekoven et al. (2014) proposed
the above approach, with the inclusion of a random effect for location in the model for λk

(see below).
If counts are summed across repeat visits to a plot, the offset term is multiplied by the

effort, where effort is defined to be the number of repeat visits; and if counts are summed
across replicate plots, plot size ak is the combined size of the plots whose counts have been
combined.

The product ak Pk is the effective area surveyed on plot k. The Pk are defined exactly as
for the multinomial models.

Note that neither population size N nor plot abundances Nk appear as parameters in the
Poisson likelihood. For designed distance sampling experiments, we only wish to compare
densities in the plots, and have no interest in estimating N in a wider study area. However,
with this approach, we can still draw inference on abundance. For spatial distance sampling
models, we can predict density throughout the study area, and so can use numerical integra-
tion under the fitted density surface to estimate abundance either for the full study area or for
any subset of it. We can also estimate plot abundance Nk by N̂k = λ̂k/P̂k . By contrast, the
multinomial model allows direct inference for both population size N and plot abundances
Nk = Nπx (xk), and, as with the Poisson model, the effect of the covariates x on abundance
or density can be investigated through the parameters of the model for πx (x).

3.1.2. Grouped Distance Data

For the case without covariates, let m jk be the number of detections in distance interval

j on plot k, with
u∑
j=1

m jk = nk . Adopting a Poisson model for these counts, and given

E(nk) = λk , then E(m jk) = λk f j for j = 1, . . . , J , where f j is given in (7).
We can now write the full likelihood as

K∏

k=1

J∏

j=1

(λk f j )m jk exp(−λk f j )

m jk ! . (30)
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For detection function covariates z recorded at the plot level, or at the stratum level if the
design is stratified (but not at the individual level), we can define

f jk =
∫ c j

c j−1

fy|z(y|zk) dy =

c j∫
c j−1

g (y, zk) πy(y)dy

Pa(zk)
(31)

giving the full likelihood

K∏

k=1

J∏

j=1

(λk f jk)m jk exp(−λk f jk)

m jk ! . (32)

Note that when using the Poisson model for the expected abundances for this approach,
we do not have separate components for L{nk } and Lm . Oedekoven et al. (2014) adopted a
different strategy which is essentially the grouped data equivalent of (27), and which does
have separate components for L{nk } (using a generalized version of (25)) and Lm (using
(6)).

3.2. PLOT ABUNDANCE MODELS

Royle et al. (2004) adopted what appears to be a different strategy for grouped distance
data. Again m jk is the count of detected animals in distance interval j on plot k, with
J∑

j=1
m jk = nk . We define the proportion Pj of plot abundance that was observed within

distance interval j :

Pj =
c j∫

c j−1

g(y)πy(y)dy, (33)

where g(y) and πy(y) represent the detection function and the distribution of distances
from the line or point in the population as before. The sum of proportions Pj over all

J distance intervals gives the average detection probability Pa, i.e.
J∑

j=1
Pj = Pa, where

Pa = ∫ w

0 g(y)πy(y)dy (2).
The Pj represent the proportion of plot abundance Nk that was both located in distance

interval j and detected, while the f j represent the proportion of detected animals nk that
were located in distance interval j . Hence we have the relationship f j = Pj/Pa.

As we do not observe the true abundances on the plot, we set E(Nk) = κk and model
these using a log-linear Poisson model:

κk = exp

⎛

⎝
Q∑

q=1

xqkβq

⎞

⎠ . (34)

The observed counts in distance interval j are then modelled as a Poisson random variable,
m jk ∼ Poisson(κk × Pj ). The likelihood for this model is
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L{nk },m =
K∏

k=1

J∏

j=1

(
κk Pj

)m jk exp
(−κk Pj

)

m jk ! . (35)

By noting that λk = κk Pa, we see that the above model for κk is equivalent to our model for
λk , provided plot sizes are all the same, and arbitrarily set as ak = 1:

λk = κk Pa = exp

⎛

⎝
Q∑

q=1

xqkβq + log(Pa)

⎞

⎠ . (36)

Thus the Poisson rate corresponding to count m jk is λk f j = λk Pj/Pa = κk Pj , so that the
likelihood of (35) is equivalent to that of (30). Here, we use (30), as it allows plot area ak to
vary.

One of the approaches of Hedley and Buckland (2004) combines a plot abundance model
with a two-stage modelling strategy: a Horvitz–Thompson-like estimator is used to estimate
abundance Nk on plot k, and these estimates N̂k are taken as the responses for a spatialmodel.
When individual covariates are recorded, this offers a simpler, if conceptually less appealing,
approach to the use of (23) in a plot count model.

4. ADDING RANDOM EFFECTS

We might wish to add random effects to a distance sampling model for several reasons.
For example, if there aremultiple lines or pointswithin a plot or site, then a site randomeffect
allows for spatial correlation in the observations; similarly, if there are repeat counts at any
given location, we might allow for temporal correlation using random effects (Oedekoven
et al. 2013, 2014). A further reason to consider random effects is if there is heterogeneity
in the detection probabilities that is not modelled by the available covariates (Oedekoven
et al. 2015).

4.1. RANDOM EFFECTS IN THE COUNT MODEL

If there are repeat visits to plots, for some purposes, we can just pool data from the repeat
visits, but sometimes we may wish to model the separate plot counts. We can then define
plot to be a random effect, which allows for correlation between repeat counts on a given
plot. Our model for expected plot count (26) is readily extended:

λkt = exp

⎛

⎝
Q∑

q=1

xqktβq + bk + loge(ak Pkt )

⎞

⎠ , (37)

where the subscript t indicates visit t to plot k. (If there are no time-varying covariates, we
can drop the t subscript from this expression.) Typically, the random effects are assumed to
be normally distributed:

bk ∼ N (0, σ 2
b ). (38)
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The likelihood for the count model now includes a normal density for the random effects
(Oedekoven et al. 2014) and is given by

L{nkt } =
K∏

k=1

∞∫

−∞

⎧
⎨

⎩

Tk∏

t=1

λ
nkt
kt exp[−λkt ]

nkt !

⎫
⎬

⎭ × 1√
2πσ 2

b

exp

[
− b2k
2σ 2

b

]
dbk, (39)

where Tk represents the total number of visits to plot k.
If a sampling location comprises more than one line or point, again for some purposes,

we can just pool the data for the location. However, we can model the separate plot counts
by introducing a location random effect, to allow for correlation across plots within a single
location:

λkl = exp

⎛

⎝
Q∑

q=1

xqklβq + bl + loge(akl Pkl)

⎞

⎠ , (40)

where l indicates location, and bl ∼ N (0, σ 2
l ). The likelihood for the counts is now

L{nkl } =
L∏

l=1

∞∫

−∞

{
K∏

k=1

λ
nkl
kl exp[−λkl ]

nkl !

}
× 1√

2πσ 2
l

exp

[
− b2l
2σ 2

l

]
dbl , (41)

where L is the total number of locations.
We could also (or instead) define a coefficient βq to be a location random effect, which

would mean that the effect of the corresponding covariate xq varies by location.

4.2. INDIVIDUAL RANDOM EFFECTS

Random effects can also be included in themodel for the detection function, to model any
heterogeneity not accounted for by any covariates z included in the model (Oedekoven et al.
2015). For example if we have a multiple-covariate distance sampling model, the model for
the scale parameter σ , given in (8), may be extended as

σ(zi ) = exp

⎛

⎝ti +
Q∑

q=1

βq zqi

⎞

⎠ , (42)

where ti ∼ N (0, σ 2
t ). The corresponding likelihood for line transect sampling is given by

Ly|z(β, σt |z) =
n∏

i=1

∫∞
−∞ g(yi |z, ti ) N (ti , 0, σt )dti∫∞

−∞
∫ w

0 g(u|z, ti )du N (ti , 0, σt )dti
(43)

where N (ti , 0, σt ) = exp

[
−0.5

(
ti
σt

)2] (√
2πσt

)−1
(Oedekoven et al. 2015). Again, we

could have coefficient βq as a random effect, so that the effect of the corresponding zq varies
by individual detection.
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The general framework for modelling measurement error of Borchers et al. (2010) may
be regarded as modelling individual random effects. In the above formulation, the response
y is observed and the random effect unobserved, whereas for measurement error models, the
response y is not observed; instead, we observe a version of it contaminated bymeasurement
error, say v. We can then write

fv|z(v|z) =
∫ ∞

0
πerr(v|y, z) fy|z(y|z) dy, (44)

where πerr(v|y, z) is an error model, specified as a probability density function of v given
y and z, and fy|z(y|z) is the probability density function of the true distances y, conditional
on covariates z.

We need additional information to estimate the parameters of the measurement error
model. Borchers et al. (2010) show how double-observer survey data (Sect. 2.3) may be
used, if further assumptions are made. They also consider the case that we are able to take
m further measurements, for which we can record both true distances y and distances with
error v (together with any covariates z). In this case, if we index the observations from the
main survey by i = 1, . . . , n, and the additional observations by i = n + 1, . . . , n + m,
then the likelihood Ly|z of (11) is replaced by

Lv|z × Lerr =
n∏

i=1

fv|z(vi |zi ) ×
n+m∏

i=n+1

πerr(vi |yi , zi ). (45)

5. CASE STUDY

To illustrate plot-based methods, we consider a point transect experiment to assess
whether conservation buffers along field margins increased densities of northern bobwhite
quail coveys in the United States (Oedekoven et al. 2014). A matched pairs design was
adopted, with two points within each site, one in a conservation buffer (type= 1), and the
other at the edge of a nearby field with the same crop but no buffer (type= 2). We analysed
data from 183 sites located in four states (MO: Missouri, MS: Mississippi, NC: North Car-
olina, TN: Tennessee)—a reduced dataset compared to Oedekoven et al.’s study. Repeat
surveys were conducted in three years (2006–2008), resulting in 1023 covey detections
from 1051 visits to points. Distance data were assumed exact and were truncated at 500m.

We adopted a maximum likelihood approach where we used the likelihood Ly,{nkt } =
Ly|z ×L{nkt } (and so omitting Lz from the full likelihood). For Ly|z we assumed a multiple-
covariate distance sampling likelihood (11) with a hazard-rate detection function as the
hazard-rate provided amuch better fit to the observed distances compared to the half-normal.
The count likelihood L{nkt } was similar to (41), but extended to take account of the design
with multiple points at each site, and repeat visits to the points. We included the covariate
type in the detection model and covariates type, state and Julian date (centred around its
mean) in the count model. The same data were analysed using the Bayesian approach of
Oedekoven et al. (2014). The first 9,999 of the 100,000 iterations were considered as burn-in
and excluded from the summary statistics.
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Table 1. Parameter estimates and standard errors for count model parameters obtained with the maximum likeli-
hood approach (MLE and SE), together with the corresponding posterior means and standard deviations
(SD) from the Bayesian approach.

Parameter Maximum likelihood Bayesian posterior

MLE SE Mean SD

Random effect std dev. 0.71 0.06 0.73 0.07
Intercept −13.15 0.13 −13.15 0.14
Type 0.68 0.10 0.67 0.12
State MS −0.43 0.17 −0.44 0.18
State NC −1.46 0.18 −1.47 0.19
State TN −1.30 0.19 −1.31 0.20
Julian date −0.023 0.0023 −0.023 0.0039

Maximum likelihood estimates of count model parameters and their standard errors were
similar to the corresponding posterior means and standard deviations from the Bayesian
approach (Table 1). The parameter of interest was the type covariate. The maximum likeli-
hood estimate for this parameter was 0.68 (SE = 0.10) indicating a 97% increase in covey
densities where conservation buffers were present relative to where they were not. This is
very close to the Bayesian estimate: the posterior mean for the type covariate was 0.67 (SD
= 0.12), corresponding to an estimated 95% increase. (Oedekoven et al. 2014, analysed
the full dataset using the Bayesian approach, and estimated that densities were 85% higher
where buffers were present.)

6. DISCUSSION

6.1. OTHER EXAMPLES

Our case study illustrates some of the advantages in adopting a model-based approach.
Here, we briefly summarize further examples that illustrate different aspects of the general
approach outlined above. We select examples for which there was a clear advantage in
adopting a model-based approach.

Buckland et al. (2009) analysed data from a point transect before–after control-impact
experiment to assess whether prescribed fire treatments in ponderosa pine forests in the
southwestern United States affected densities of two species of warbler. A plot count model
was adopted assuming exact distance (Sect. 3.1), with an offset that was a function of
detectability. A two-stage method was implemented in which detectability was estimated in
stage 1, and counts were modelled in stage 2, conditional on estimated detectability. Uncer-
tainty in estimated detectability was propagated to stage 2 using a bootstrap. A significant
interaction was detected between treatment (control or burning) and year, indicating strong
evidence of reduced warbler densities in the year after burning, with moderate evidence of
continuing lower densities a year later.

Oedekoven et al. (2013) considered a point transect experiment, to assess whether con-
servation buffers along field margins increased densities of indigo buntings in the United
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States. Many of the sampled sites were in common between the bunting survey and the
bobwhite survey of our case study, although the bunting survey was carried out in the breed-
ing season, while the bobwhite survey was conducted in the fall. Further, detected buntings
were assigned to distance intervals, while exact distances were measured for the bobwhites.
For the buntings, a plot abundance model for interval distance data was adopted, which is
equivalent to a plot count model (Sect. 3.2). Thus the approach of Sect. 3.1 was adopted,
and maximum likelihood methods were used to fit the model. The detection function was
stratified by state and the count model included covariates together with a random effect
for site. The treatment effect was highly significant, with densities 35% higher on buffered
fields than on control fields.

In this paper, we only superficially address full spatial models for distance sampling.
Key papers in this area are Högmander (1991), Hedley and Buckland (2004) and Johnson
et al. (2010). Miller et al. (2013) explored how the density of pantropical spotted dolphins
varies through a study region in the Gulf of Mexico. Shipboard line transect surveys were
carried out, during which sightings and environmental covariates were recorded. In an
online appendix, they provide a worked example of how to fit a density surface, based on
the methods of Hedley and Buckland (2004). In the case of the spotted dolphins, they found
that densities were very variable, and they were able to identify ‘hotspots’.

6.2. GENERAL DISCUSSION

Standard distance sampling methods are hybrid methods in that they use a model-based
approach for modelling the detection function, but a design-based approach both to ensure
that animal locations are independent of line or point locations and to extrapolate density on
the surveyed plots to the wider study region. When the sole objective of a distance sampling
survey is to estimate abundance (or equivalently, mean density) in the study region, this
strategy is remarkably robust, if somewhat unsatisfactory conceptually. Fully model-based
methods allow a more coherent approach, at the risk of sensitivity to choice of model. More
importantly, model-based methods exploit the data more effectively, to answer questions
other than how many animals occupy the study region. For example, designed distance
sampling experiments are starting to come into use, and model-based methods allow formal
assessment of treatment effects. Further, spatial distance-sampling models allow animal
density to be modelled as a function of habitat, topography and/or environment, and by
numerically integrating under the corresponding section of the fitted density surface, animal
abundance may be estimated for any sub-region of interest. Spatial models also provide a
means to address non-uniformdistribution in the vicinity of samplers as a result of responsive
movement or non-randomsampler placement, by addingdistance fromsampler as a covariate
in the density model. Marques et al. (2010, 2013) address non-uniform distribution, but do
not incorporate a full densitymodel. Instead,Marques et al. (2010)model the density surface
around the points for point transect sampling along features, while for line transect sampling,
Marques et al. (2013)model the distribution of animals as a function of distance from the line.

We expect to see rapid increase in the use of fully model-based distance sampling meth-
ods, given their potential for widening the applicability of distance sampling.
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