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Capture-recapture data are often collected when abundance esti-8

mation is of interest. In this manuscript we focus on abundance esti-9

mation of closed populations. In the presence of unobserved individ-10

ual heterogeneity, specified on a continuous scale for the capture prob-11

abilities, the likelihood is not generally available in closed form, but12

expressible only as an analytically intractable integral. Model-fitting13

algorithms to estimate abundance most notably include a numerical14

approximation for the likelihood or use of a Bayesian data augmen-15

tation technique considering the complete data likelihood. We con-16

sider a Bayesian hybrid approach, defining a “semi-complete” data17

likelihood, composed of the product of a complete data likelihood18

component for individuals seen at least once within the study and19

a marginal data likelihood component for the individuals not seen20

within the study, approximated using numerical integration. This21

approach combines the advantages of the two different approaches,22

with the semi-complete likelihood component specified as a single23

integral (over the dimension of the individual heterogeneity com-24

ponent). In addition, the models can be fitted within BUGS/JAGS25

(commonly used for the Bayesian complete data likelihood approach)26

but with significantly improved computational efficiency compared to27

the commonly used super-population data augmentation approaches28

(between about 10 and 77 times more efficient in the two examples29

we consider). The semi-complete likelihood approach is flexible and30

applicable to a range of models, including spatially explicit capture-31

recapture models. The model-fitting approach is applied to two dif-32

ferent datasets: the first relates to snowshoe hares where model Mh is33

applied and the second to gibbons where a spatially explicit capture-34

recapture model is applied.35

1. Introduction. In order to estimate total abundance capture-recapture data are often col-36

lected on the population under study. Capture-recapture data collection methods involve partially37

observing the population at a series of capture events (or using a number of different sources), such38

that each individual observed within the study is uniquely identifiable. Assuming that marks are39

unique and cannot be lost, a capture history for each individual observed within the study can40

be constructed, detailing whether the given individual is observed or not at each capture event.41

Statistical models can be constructed and applied to capture-recapture data to estimate the num-42

ber of individuals in the population that are not observed. We focus on closed population models,43

where it is assumed that that there are no births/deaths/migrations in the population within the44

study period. Applications include estimating the number of injecting drug users (King et al.,45

2014; Overstall et al., 2014), pages on the world wide web (Fienberg et al., 1999), disease preva-46

lence (Manrique-Vallier and Fienberg, 2008) and animal populations (Borchers et al., 2002). We47

focus on statistical models for ecological data where individuals are observed at a series of capture48

events. For further discussion of ecological (closed) capture-recapture data, and the underlying as-49

sumptions, see for example, Borchers et al. (2002), Williams et al. (2002) and McCrea and Morgan50

(2014).51

Keywords and phrases: BUGS; capture-recapture; closed populations; individual heterogeneity; JAGS; spatially
explicit.
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In general, the likelihood of capture-recapture data can be expressed in multinomial form, where52

the different multinomial cells correspond to each possible capture history and the cell entries to53

the number of individuals with the given capture history. The unknown parameters to be estimated54

in the likelihood function are the capture (or detection) probabilities and the total population size55

(or number of individuals in the population unobserved at any capture event). Otis et al. (1978)56

described three different possible effects on the capture probabilities corresponding to temporal57

(t), behavioural (b) and individual heterogeneity (h) effects. We adopt the standard notation and58

describe the different models by Ma, such that a ⊆ {t, b, h}, corresponding to the combination of59

effects in the given model.60

In this paper we focus on models that include individual heterogeneity (i.e. Mh-type models).61

Individual heterogeneity is often introduced by specifying the capture probabilities as a finite or62

infinite mixture. Finite mixture models lead to an explicit likelihood expression which can be63

maximised numerically to obtain the maximum likelihood estimates (MLEs) of the parameters of64

interest (Pledger, 2000). Infinite mixture models specify the individual heterogeneity as a random65

effects model. For the special case of a Beta-Binomial random effects component the likelihood is66

available in closed form (Dorazio and Royle, 2003; Morgan and Ridout, 2008). We will consider the67

more general case, with an arbitrary individual heterogeneity component leading to an analytically68

intractable likelihood. Previous approaches to fit such models to the data include (i) numeral inte-69

gration to estimate the marginal (or observed) data likelihood (Coull and Agresti, 1999; Borchers70

and Efford, 2008; Gimenez and Choquet, 2010); and (ii) Bayesian data augmentation techniques,71

using a complete data likelihood approach (corresponding to the joint probability density function72

of the capture histories and individual effects), integrating out the individual heterogeneity com-73

ponent within a Markov chain Monte Carlo-type (MCMC) algorithm (Durban and Elston, 2005;74

Royle et al., 2007, 2009; King and Brooks, 2008; King et al., 2009; Royle and Dorazio, 2012). We75

combine these two approaches defining a semi-complete data likelihood constructed as the product76

of a complete data likelihood component for the individuals seen at least once in the study and a77

marginal data likelihood component for the unseen individuals. This combines the advantages of78

each of the individual approaches. We note that similar approaches have been previously proposed79

for specific applications, using bespoke computer codes. Most notably, Fienberg et al. (1999) pro-80

pose a conditional MCMC algorithm for Rasch-type models, employing a block update of the total81

population size and individual heterogeneity terms; while Bonner and Schofield (2014) consider an82

additional Monte Carlo integration step within the MCMC algorithm applied to individual covari-83

ate models. We describe how the latter approach is a special case of our general semi-complete data84

likelihood approach in Section 3.3. Finally, we demonstrate how individual heterogeneity models85

can be efficiently fitted using BUGS/JAGS with general prior structures specified on all the model86

parameters (including the total population size) and provide the associated computer codes.87

The paper proceeds as follows. Section 2 describes the general closed population model structure88

and associated notation. Section 3 describes previous model-fitting approaches and the new pro-89

posed semi-complete data likelihood approach. The implications of the BUGS/JAGS specification90

for the semi-complete data likelihood and previous Bayesian complete data likelihood approaches91

are compared in Section 4 and the approaches applied and compared for two real examples: the92

first example relates to snowshoe hares where model Mh is applied and the second to a dataset93

of gibbons where a spatially explicit capture-recapture model is applied. Finally in Section 5 we94

conclude with a discussion.95

2. Individual heterogeneity models. We assume that within the capture-recapture study96

there is a series of T discrete capture occasions. Within the study a total of n distinct individuals97

are observed, with the total (unknown) population size denoted by N . For simplicity we arbitrarily98

number the observed individuals i = 1, . . . , n and the unobserved individuals i = n + 1, . . . , N .99

Let pit denote the capture probability of individual i = 1, . . . , N at time t = 1, . . . , T . Further, for100
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standard capture-recapture data, xi = {xit : t = 1, . . . , T} denotes the capture history of individual101

i = 1, . . . , N , such that102

xit =

{
0 individual i is unobserved on occasion t;
1 individual i is observed on occasion t.

103

We consider individual heterogeneity specified such that104

pit = g(θ, εi),105

for some function g, where θ denotes the model parameters associated with the capture probabilities106

(which may include, for example, temporal and/or behavioural effect terms, regression coefficients107

for covariate values etc.) and ε = {εi : i = 1, . . . , N} such that εi ∈ S ⊂ Rk, corresponding to108

the individual heterogeneity term for individual i = 1, . . . , N . Further, we assume an underlying109

model for the individual heterogeneity, such that ε is a function of the parameters η, and that the110

individual heterogeneity terms, εi, are independent of each other conditional on η. The associated111

joint probability density function of the heterogeneity terms is given by fε(ε|N,η) =
∏N
i=1 fε(εi|η),112

using the conditional independence assumption (and dropping the dependence on N for the condi-113

tional density function of the individual heterogeneity terms for individual i). Further, to provide114

a general framework for both observed and unobserved individual heterogeneity we additionally115

write ε = {εObs, εMis} where εObs denotes the set of observed individual heterogeneity compo-116

nents and εMis the set of unobserved individual heterogeneity components. Similarly, we write117

εi = {εObsi , εMis
i }, for i = 1, . . . , N with obvious notation. Finally, we assume that the capture118

histories of the individuals are independent of each other given the capture probability model119

parameters, θ, and individual heterogeneity terms, ε.120

The marginal data likelihood can be expressed in the form,121

fm(x, εObs|N,θ,η) =

∫
εMis
1

. . .

∫
εMis
N

fc(x, ε|N,θ,η)dεMis
1 . . . dεMis

N122

=

∫
εMis
1

. . .

∫
εMis
N

fx(x|N,θ, ε)fε(ε|N,η)dεMis
1 . . . dεMis

N123

∝ N !

(N − n)!

N∏
i=1

∫
εMis
i

fx(xi|θ, εi)fε(εi|η)dεMis
i ,(2.1)124

using the multinomial distributional form of the capture-recapture data (omitting the constant125

multinomial coefficients for simplicity), and conditional independence of the random effect terms.126

The term fc(x, ε|N,θ,η) corresponds to the complete data likelihood (i.e. the joint probability den-127

sity function of the capture histories and individual effects); fx(x|N,θ, ε) the conditional likelihood128

of the capture histories (where the conditioning includes the individual heterogeneity terms); and129

fε(ε|N,η) the joint probability density function of the individual heterogeneity terms. The term130

fx(xi|θ, εi) corresponds to the conditional likelihood of capture history for individual i = 1, . . . , N ;131

and fε(εi|η) the conditional probability density function of the individual heterogeneity component132

for individual i = 1, . . . , N (where in each case we drop the dependence on N).133

Example 1 - Continuous individual covariates. We consider the case with q time-invariant con-134

tinuous individual covariates ε = {ε1, . . . , εN} where εi ∈ S ⊆ Rq denotes the covariate values as-135

sociated with individual i = 1, . . . , N . Since the covariate values are time-invariant, the associated136

capture probabilities for each individual are also time-invariant, so that pit = pi for t = 1, . . . , T .137

Assuming that the capture probabilities are linearly related to the covariate values via some link138

function, we may specify,139

g−1(pi) = α+ βT εi,140
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so that θ = {α,β}. Common choices for g−1 include the logit and probit functions. Additional141

individual/temporal random effects can be included in the capture probabilities, but we omit142

these here for simplicity (see Example 2). Further we specify a parametric model for the covariate143

values, assuming that conditional on the additional covariate parameters η, the covariate values144

are independent.145

Assuming that for each individual observed within the study the set of individual covariate146

values is recorded, we have that εObs = {εi : i = 1, . . . , n} and εMis = {εi : i = n+ 1, . . . , N}. More147

generally, the covariate values may not be recorded for all observed individuals. For example, the148

observation process may include sightings recorded from a distance (rather than physical captures)149

so that the covariate may not be able to be obtained if a physical capture is necessary (for example if150

the covariate corresponds to wingspan). In this case the set of unobserved individual heterogeneity151

terms is extended to include the unknown covariate values for observed individuals.152

The complete data likelihood is of the form,153

fc(x, ε|N,θ,η) ∝ N !

(N − n)!

N∏
i=1

[
T∏
t=1

pxitit (1− pit)1−xit

]
× fε(εi|η)154

=
N !

(N − n)!

N∏
i=1

pyii (1− pi)T−yi × fε(εi|η),155

where pi is of the above form and yi =
∑T

t=1 xit (denoting the total number of times individual i is156

observed). The first term of the complete data likelihood corresponds to the conditional likelihood157

(conditional on the individual covariate terms) and the second term to the individual covariate158

component.159

The marginal data likelihood integrates out the unobserved covariate values εMis. For notational160

simplicity we provide the marginal data likelihood for the special case where all covariate values161

are known for individuals observed within the study (i.e. εObs = {εi : i = 1, . . . , n} and εMis =162

{εi : i = n+ 1, . . . , N}):163

fm(x, εObs|N,θ,η) ∝ N !

(N − n)!

n∏
i=1

pyii (1− pi)T−yifε(εi|η)×
N∏

i=n+1

∫
εi
pyii (1− pi)T−yifε(εi|η)dεi164

=
N !

(N − n)!

n∏
i=1

pyii (1− pi)T−yifε(εi|η)×
[∫
ε0

(1− p0)T fε(ε0|η)dε0

]N−n
,165

where g−1(p0) = α + βT ε0. The extension to the case where observed individuals may also have166

unknown covariate values is immediate.167

We note, in general, the model can be extended to include time-varying individual covariates, us-168

ing the time and individual dependent capture probability, pit. This typically substantially increases169

the number of unobserved covariate values, since if an individual is not observed, the corresponding170

covariate value is necessarily also unknown. However, for closed populations, to satisfy the condi-171

tion that the population is closed the study period is generally short in duration so that changes172

in time-varying individual covariate values is likely to be limited.173

Example 2 - Mh-type models. For Mh-type models the individual heterogeneity corresponds to174

an unobserved individual random effect component (so that εObs = ∅ and εMis = ε). For example,175

for model Mh we may set θ = {α} and η = {σ2} such that,176

εi ∼ N(0, σ2),177
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for i = 1, . . . , N , where σ2 denotes the individual random effect variance and S = R. For this178

model, the capture probabilities are again independent of time t, so we can write pit = pi for all179

t = 1, . . . , T , with180

g−1(pi) = α+ εi,181

for i = 1, . . . , N and t = 1, . . . , T . Common choices for g−1 include the logit and probit functions.182

The extension to incorporate additional time and/or behavioural effects is immediate (i.e. models183

Mth,Mbh and Mtbh; see for example King and Brooks, 2008).184

The complete data likelihood for model Mh can be written in the form,185

fc(x, ε|N,θ,η) ∝ N !

(N − n)!

N∏
i=1

pyii (1− pi)T−yi ×
1√

2πσ2
exp

(
− ε2i

2σ2

)
,186

where pi is of the above form and yi =
∑T

t=1 xit. Once again, the first term of the complete data187

likelihood corresponds to the conditional likelihood (conditional on the individual random effect188

terms) and the second term to the individual effect component.189

The marginal data likelihood integrates out the ε terms and (dropping the term εObs since no190

individual heterogeneity terms are observed, i.e. εObs = ∅) can be efficiently expressed as,191

fm(x|N,θ,η) ∝ N !

(N − n)!

T∏
k=0

[∫
εk∈S

(pk)
k(1− pk)T−k

1√
2πσ2

exp

(
−
ε2k

2σ2

)
dεk

]nk

,192

where nk =
∑N

i=1 I(yi = k) and denotes the number of individuals observed k times within the193

study, for k = 0, . . . , T (so that n0 is unobserved and N = n0 + n) and g−1(pk) = α+ εk.194

Example 3 - SECR models. For traditional spatially explicit capture-recapture models, S ⊂ R2
195

and the individual heterogeneity corresponds to the unobserved activity centre of the individual196

(so that εObs = ∅ and εMis = ε). The range of possible models is greater for SECR than non-spatial197

capture-recapture as SECR models involve multiple traps or detectors at different locations on each198

occasion and take account of the location(s) of observations within occasions. To this end we define199

uj = (uj1, uj2) ∈ R2 to be the Cartesian coordinates of trap j, for j = 1, . . . , J . We consider the200

likelihood for a study with binary detection data within occasion, such that201

xijt =

{
0 individual i is unobserved by detector j on occasion t;
1 individual i is observed by detector j on occasion t.

202

We consider the case where individuals can be observed by more than one detector at each occa-203

sion and we assume that observations by different detectors within occasions (as well as between204

occasions) are independent. In this context, εi = (εi1, εi2) ∈ R2 (i = 1, . . . , N) denote the Carte-205

sian coordinates of the activity centres of the N individuals in S ⊂ R2. It is usually assumed that206

these are independently uniformly distributed in S and do not change between occasions, so that207

fε(ε|N,η) =
∏N
i=1 fε(εi|η) = A−N , where A is the area of S. The probability of individual i being208

observed by detector j at capture occasion t, denoted pijt is assumed to depend on only the dis-209

tance of the detector from the activity centre of individual i, so that pijt = g(θ, ||uj − εi||), where210

||uj − εi|| is the vector norm
√∑2

k=1(ujk − εik)2. The half-normal form is a common choice for g.211

For example, assuming that the capture probabilities are time-independent, we may specify,212

pijt = pij = p0 exp

(
−||uj − εi||

2

2σ2

)
213

with θ = {p0, σ
2}.214
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The complete data likelihood can be written as215

fc(x, ε|N,θ,η) ∝ N !

(N − n)!

N∏
i=1

 T∏
t=1

J∏
j=1

p
xijt
ijt (1− pijt)1−xijt × fε(εi|η)

 ,216

where pijt is of the above form. The first term in the product over individuals corresponds to the217

conditional likelihood associated with individual i (conditional on the individual random effect218

terms) and the second term to the corresponding individual effect component.219

The marginal data likelihood integrates out the εi terms and can be expressed as,220

fm(x|N,θ,η) ∝ N !

(N − n)

N∏
i=1

∫
εMis
i

T∏
t=1

J∏
j=1

p
xijt
ijt (1− pijt)1−xijt × fε(εi|η)dεMis

i ,221

once more omitting the term εMis = ∅.222

2.1. Model fitting. In the presence of individual heterogeneity leading to an analytically in-223

tractable marginal data likelihood a range of different approaches have been proposed. These in-224

clude a (classical) numerical integration approach, approximating the marginal data likelihood and225

a (Bayesian) data augmentation approach using the complete data likelihood. For the particular226

application to Mh-type models and SECR, see for example Coull and Agresti (1999); Borchers and227

Efford (2008); Gimenez and Choquet (2010) (for a classical numerical integration approach) and228

Durban and Elston (2005); Royle et al. (2007, 2009); King and Brooks (2008); Royle and Dorazio229

(2012) (for Bayesian data augmentation approaches). We briefly describe the approaches in turn.230

2.1.1. Marginal data likelihood. For a general individual heterogeneity model, the marginal data231

likelihood may not be available in closed form (exceptions exist where the heterogeneity component232

is described as a finite mixture model or infinite Beta distribution). In this case, the corresponding233

likelihood is given in equation (2.1) as a product of integrals. For computational efficiency, we234

are able to combine like terms in the likelihood corresponding to each unique encounter history235

(corresponding to the combined capture history and observed individual heterogeneity values).236

Notationally, let Ω denote the set of possible encounter histories; xω the capture history for ω ∈ Ω;237

εω the individual heterogeneity terms for encounter history ω ∈ Ω; εMis
ω the unobserved individual238

heterogeneity terms for encounter history ω ∈ Ω and nω the number of individuals with encounter239

history ω. The marginal data likelihood can be expressed as,240

fm(x, εObs|N,θ,η) ∝ N !

(N − n)!

∏
ω∈Ω

[∫
εMis
ω

fx(xω|N,θ, εω)fε(εω|N,η)dεMis
ω

]nω
.241

Thus, this likelihood requires the estimation of a series of integrals each of dimension (at most)242

dim(S), where typically dim(S) is small. For example, in the presence of q time invariant continuous243

covariates, dim(S) = q, for model Mh, dim(S) = 1 and for the standard SECR model dim(S) =244

2 (see Examples 1-3 above). The number of integrals in the marginal data likelihood is equal245

to the number of unique observed encounter histories plus one (corresponding to the encounter246

history of not being observed). Each integral can, in general, be approximated using standard247

integration techniques, such as Gauss-Hermite quadrature, grid-based approaches etc. Thus the248

computational efficiency of this approach will be dependent on dim(S) and the number of unique249

encounter histories observed. For closed population models, dim(S) is typically very small. This250

(approximate) likelihood can be estimated using standard optimisation techniques to obtain the251

associated MLEs of the model parameters.252
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2.1.2. Complete data likelihood. The Bayesian complete data likelihood approach specifies the253

unobserved individual heterogeneity terms, εMis, as auxiliary variables (or additional parameters).254

The joint posterior distribution of the parameters and auxiliary variables is then formed and given255

by,256

π(N,θ,η, εMis|x, εObs) ∝ fc(x, ε|N,θ,η)p(N,θ,η)257

= fx(x|N,θ, ε)fε(ε|N,η)p(N,θ,η),258

where fc(x, ε|N,θ,η) denotes the complete data likelihood; fx(x|N,θ, ε) the conditional likelihood259

of the observed data (conditional on the full set of individual heterogeneity terms); fε(ε|N,η) the260

individual heterogeneity component; and p(N,θ,η) the prior density specified on N , θ and η. The261

posterior density of only the model parameters, π(N,θ,η|x, εObs), is obtained by integrating out262

over the auxiliary variables, εMis. However, the integration is analytically intractable so that an263

MCMC approach is typically implemented, whereby we construct a Markov chain with stationary264

distribution equal to the joint posterior distribution, π(N,θ,η, εMis|x, εObs), and subsequently265

estimates of the marginal posterior summary statistics of interest are obtained.266

An additional computational model fitting difficulty arises since ε = {ε1, . . . , εN} and hence ε267

is itself a function of the unknown parameter, N . To address this issue King and Brooks (2008)268

describe a reversible jump (RJ) MCMC algorithm for Mh-type models that is able to explore the269

joint posterior distribution, where the number of parameters is able to vary within the constructed270

Markov chain. This involved writing bespoke computer code. Alternatively, Durban and Elston271

(2005); Royle et al. (2007, 2009); Royle and Dorazio (2012) use data augmentation techniques that272

can be fitted in BUGS/JAGS. The underlying idea is to specify a super-population of size M , with273

associated individual random effect terms εi for i = 1, . . . ,M . The encounter histories for individu-274

als n+ 1, . . . ,M correspond to not being observed within the study. Within the MCMC algorithm,275

the random effect term for each individual in this super-population is imputed in addition to a276

binary indicator variable, zi for i = 1, . . . ,M , identifying which members of the super-population277

are members of the target population of interest (by definition zi = 1 for i = 1, . . . , n, i.e. for278

all individuals observed at least once within the study). This binary indicator variable has been279

implemented using two different techniques each with different consequences. Durban and Elston280

(2005) specify the binary variables, such that z1, . . . , zN = 1 and zN+1, . . . , zM = 0 (i.e. the indi-281

cator variables are ordered); whereas Royle et al. (2007, 2009) do not induce any such structure282

on the indicator variables relating to unobserved individuals, setting zi = 1 for i = 1, . . . , n and283

modelling each indicator variable zi for i = n+1, . . . ,M . The estimate of N is obtained as the sum284

of non-zero indicator variables, i.e. N =
∑M

i=1 zi. In other words Durban and Elston (2005) define285

the indicator variables, conditional on N , whereas Royle et al. (2007, 2009) define N , conditional on286

the indicator variables. For ease of reference we refer to the complete data likelihood data approach287

of Durban and Elston (2005) as CD:DE (complete data: Durban and Elston) and of Royle et al.288

(2007, 2009); Royle and Dorazio (2012) as CD:R (complete data: Royle).289

Several issues arise with regard to these super-population data augmentation approaches. For290

both approachesM needs to be specified and corresponds to an upper bound for the total population291

size. This necessarily leads to a trade-off between the size specified for M and the computational292

speed of the code. The larger the value of M , the greater the computational time due to the293

imputation of the random effect term (and binary indicator variable for CD:R) for each individual in294

the super-population. Too small a value for M will lead to a truncation of the posterior distribution295

and biased inference. In addition, for CD:R, since N is derived as a deterministic function of the296

indicator variables, it has a more limited prior specification (see Section 3.2 for further discussion297

regarding prior specification). Alternatively for the approach of CD:DE, due to the more restricted298

nature of the indicator variable specification, mixing issues can arise. To aid in the efficiency of299

the computational algorithm Durban and Elston (2005) advocate the use of a pseudo-prior for300
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the corresponding random effect terms for individuals not in the population (i.e. for εi for all301

i = N + 1, . . . ,M). The pseudo-prior is obtained from an initial MCMC run, using the estimated302

posterior distribution for the random effect of an unobserved individual. For further discussion of303

data augmentation techniques (particularly focusing on CD:R), see for example, Link (2013) and304

Schofield and Barker (2014).305

In general, without any prior information, the choice of analysis (classical marginal data likeli-306

hood or Bayesian complete data likelihood) may be data dependent. In general, for a given dataset,307

there is a computational trade-off between these different approaches. The marginal data likelihood308

requires the numerical approximation of the integrals over the individual random effects; the com-309

plete data likelihood is fast to evaluate but the individual random effects need to be updated310

within the MCMC algorithm (using either RJMCMC or a super-population approach). To avoid311

the use of explicitly approximating multiple integrals or the need to use a super-population or trans-312

dimensional algorithm, we propose a hybrid semi-complete data likelihood approach. This involves313

numerical integration for that part of the likelihood corresponding to unobserved individuals (as314

in the marginal likelihood approach), while for the observed individuals any unobserved individual315

heterogeneity terms are treated as auxiliary variables within a data augmentation approach (as in316

the complete data likelihood approach). In this case, the number of auxiliary variables is known317

so that the dimension of the parameter space is known and fixed. Standard BUGS/JAGS soft-318

ware readily accommodates this approach, which involves approximation of only a single integral319

of dimension dim(S). We describe this approach in more detail next.320

3. Semi-complete data likelihood. We propose a semi-complete data likelihood approach,321

combining the complete data likelihood for the individuals that are observed within the study (i.e.322

individuals i = 1, . . . , n), with a marginal data likelihood for the individuals that are not observed323

within the study (i.e. individuals i = n + 1, . . . , N). The semi-complete likelihood is expressed in324

the form,325

fs(x, ε1:n|N,θ,η) = fx∗(x|N,θ,η, ε1:n)fε(ε1:n|N,η)326

where ε1:n = {ε1, . . . , εn}; fx∗(x|N,θ,η, ε1:n) denotes the likelihood of the capture histories condi-327

tional on the model parameters (N , θ and η) and individual heterogeneity terms for the observed328

individuals only (ε1:n); and fε(ε1:n|N,η) the joint probability density function of the individ-329

ual heterogeneity component for the observed individuals. Further, we have the following condi-330

tional likelihood functions: fx∗(x1:n|N,θ, ε1:n) for the capture histories of the observed individuals331

only, conditional on the model parameters and individual heterogeneity terms for the observed332

individuals (dropping the dependence on η since these are conditionally independent given ε1:n);333

fx∗(xn+1:N |N,θ,η) for the capture histories of the unobserved individuals, conditional on the model334

parameters; and fx∗(xi|θ,η) for the capture history for unobserved individual i = n + 1, . . . , N ,335

given the capture probability and individual heterogeneity model parameters (in the latter two336

cases dropping the conditioning on ε1:n). Then, letting xa:b = {xa, . . . ,xb}, we can express the337

conditional likelihood in the form:338

fx∗(x|N,θ,η, ε1:n) = fx∗(x1:n|N,θ, ε1:n)fx∗(xn+1:N |N,θ,η)339

∝ N !

(N − n)!

n∏
i=1

fx(xi|θ, εi)×
N∏

i=n+1

fx∗(xi|θ)340

=
n∏
i=1

fx(xi|θ, εi)×
N !

(N − n)!
(1− p∗)N−n ,(3.1)341
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where 1 − p∗ denotes the probability of not being observed within the study (or conversely p∗342

denotes the probability of being seen at least once within the study) such that,343

(3.2) 1− p∗ =

∫
εω∈S

fx(ω = 0|θ, εω)fε(εω|η)dεω,344

and ω = 0 denotes the encounter history of a single individual who is unobserved within the study;345

fx(ω = 0|θ,η, εω) the conditional likelihood function associated with an individual not observed346

within the study and fε(εω|θ,η) the probability density function of the associated individual het-347

erogeneity terms for an individual not observed within the study. The product in equation (3.1)348

corresponds to the likelihood of the encounter histories, for an individual observed at least once349

within the study, conditional on the individual heterogeneity terms. The latter term corresponds350

to the contribution to the likelihood relating to the unobserved individuals.351

An alternative (equivalent) model specification is given by352

fx∗(x|N,θ,η, ε1:n) ∝ 1

(p∗)n

n∏
i=1

fx(xi|θ, εi)×
N !

(N − n)!
(p∗)n(1− p∗)N−n,(3.3)353

where p∗ is as above. The first term corresponds to the conditional likelihood of the observed354

capture histories, given that each of these individuals has been observed within the study and355

the corresponding individual heterogeneity terms. The second term corresponds to the Binomial356

probability of observing the number of individuals in the study, given the total population size.357

We note that the semi-complete likelihood reduces to a single integral (over the dimension of the358

individual heterogeneity terms, i.e. dim(S)). This is in contrast to the marginal data likelihood which359

is a product of integrals (see Section 2.1.1), where the number of additional integrals corresponds360

to the number of unique encounter histories observed.361

3.1. Bayesian implementation. Notationally, we let εObs1:n and εMis
1:n denote the set of observed362

and unobserved individual heterogeneity terms for the observed individuals, respectively. The joint363

posterior distribution for the model parameters and unobserved individual heterogeneity terms for364

the observed individuals is given by,365

π(N,θ,η, εMis
1:n |x, εObs1:n ) ∝ fs(x, ε1:n|N,θ,η)p(N,θ,η)366

= fx∗(x|N,θ,η, ε1:n)fε(ε1:n|N,η)p(N,θ,η),(3.4)367

where fs(x, ε1:n|N,θ,η) is the semi-complete data likelihood. Note that, as is typically the case, we368

assume that the priors specified for the total population size and model parameters are independent,369

so that p(N,θ,η) = p(N)p(θ)p(η).370

We use a standard Bayesian data augmentation approach for obtaining inference on the posterior371

distribution of interest, π(N,θ,η|x, εObs1:n ). The number of auxiliary variables needed within this372

Bayesian data augmentation approach, using the semi-complete likelihood, is fixed and simply373

equal to |εMis
1:n | (i.e. the auxiliary variables correspond to the number of unobserved individual374

heterogeneity terms of observed individuals). This is in contrast to the use of the joint posterior375

distribution of the model parameters and all unobserved individual heterogeneity terms, εMis,376

given in equation (2.2)), since εMis = {εMis
1:n , εn+1:N} where N is a parameter to be estimated. A377

number of different approaches have been proposed to fit individual heterogeneity models. These378

include trans-dimensional algorithms using reversible jump MCMC (King and Brooks, 2008), a joint379

posterior conditional MCMC algorithm (Fienberg et al., 1999) for Rasch-type (Mth) models and380

super-population data augmentation techniques. The first two approaches require bespoke code,381

while the super-population data augmentation approaches can be implemented within BUGS/JAGS382

(Durban and Elston, 2005; Royle et al., 2007; Royle and Dorazio, 2012) but require the specification383
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of an upper bound M and imputation of the (M − n) individual random effect terms εn+1:M (and384

dependent on the exact coding approach, M binary indicator variables).385

Using the semi-complete data likelihood and corresponding posterior distribution given in equa-386

tion (3.4), including only the heterogeneity terms for the observed individuals, permits standard387

(non-trans-dimensional) MCMC updating algorithms (such as the Metropolis-Hastings algorithm)388

to obtain inference on the parameters θ, η and N . However, the semi-complete data likelihood389

removes the necessity to impute the terms εn+1:M and the need to specify an upper bound on the390

total population size, in general (see Section 3.2). Consequently, the models can be immediately391

fitted within BUGS/JAGS packages (see Section 4 for further discussion and King et al. (2015)392

for example JAGS code), with an explicit prior distribution specified on N . The trade-off of using393

the posterior distribution with semi-complete data likelihood, given in equation (3.4), is that the394

integral in equation (3.2) needs to be explicitly (numerically) estimated. However, in general this395

will be of very low dimension (often only one or two dimensions) for closed population models and396

so computationally fast and able to be accurately estimated (for example using Gaussian quadra-397

ture). We compare the complete data likelihood and semi-complete data likelihood approaches in398

Section 4 using JAGS for two different applications.399

3.2. Prior specification for N . We briefly discuss possible prior distributions that are com-400

monly specified on N and the corresponding Bayesian (and BUGS/JAGS) implementation. For401

the Bayesian data augmentation approach of Royle et al. (2007) (approach CD:R), the prior on402

N is only defined implicitly, given the prior specification on the indicator function relating to the403

probability that an individual in the super-population is a member of the population of interest, de-404

noted ψ. The most common form of induced prior on N is the Uniform prior. However, Link (2013)405

showed that the uninformative prior ψ ∼ U [0, 1] which induces the discrete uniform prior on N can406

lead to undesirable properties. Link (2013) therefore recommended the prior ψ ∼ Beta(0.001, 1)407

which is easy implemented in BUGS/JAGS and induces an approximate Jeffreys’ prior on N . More408

generally, specifying the prior ψ ∼ Beta(a, b) induces the prior N ∼ Beta − Binomial(M,a, b),409

where M is the super-population upper bound. This is a fairly flexible prior structure, but the410

computational limitations with regard to specifying a suitable value of M remain.411

For the complete data likelihood approach of Durban and Elston (2005) (approach CD:DE) and412

the semi-complete data likelihood approach an explicit prior is directly specified on N . Thus, any413

arbitrary distribution (specified on the set of non-negative integers) can be specified on the total414

population size. For example, Jeffreys’ prior is a commonly used uninformative prior, given by415

p(N) ∝ N−1 (see for example, Madigan and York (1997); King and Brooks (2008)). We note that416

specifying Jeffreys’ prior, and using the semi-complete data likelihood expression given in equation417

(3.3) leads to a standard posterior conditional distribution for N , i.e.,418

(N − n)|x,θ,η ∼ Neg −Bin(n, p∗),419

for p∗ given in equation (3.1)1. Consequently, for Jeffreys’ prior, the Gibbs sampler can be imple-420

mented for updating N within the MCMC algorithm. In general, if the prior or posterior conditional421

distribution for N is of (closed or) standard form this also simplifies the specification of the model in422

BUGS/JAGS, since this prior or posterior conditional distribution can be explicitly specified in the423

model component (see King et al. (2015) for sample JAGS code for the above Negative-Binomial424

posterior conditional distribution case). See also Fienberg et al. (1999) for further discussion.425

1We use the form of the Negative Binomial distribution such that for X ∼ Neg −Bin(n, q) the probability mass
function is given by,

f(x) =
(x + n− 1)!

x!(n− 1)!
qn(1 − q)x.

This is the functional form of the distribution used with BUGS/JAGS.
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Alternative prior distributions include p(N) ∝ N−c for some positive constant c, proposed by426

Fienberg et al. (1999). For c > 1 the tail of the distribution for N decays faster than for Jeffreys’427

prior; while c < 1 leads to a heavier tailed distribution. Alternatively, for an informative prior dis-428

tribution for N , a Poisson or Poisson-Gamma (equivalently a Negative-Binomial) prior distribution429

is often specified on N (King and Brooks, 2001). It can also be noted that specifying N ∼ Po(λ)430

and λ ∼ Γ(δ, δ) for small δ provides another approximate Jeffreys’ prior for N . These alternative431

prior distributions are able to be implemented within BUGS/JAGS (typically using the zeros or432

ones trick, Lunn et al. (2013) - see King et al. (2015) for associated sample JAGS code).433

3.3. Special case. We note that the approach presented by Bonner and Schofield (2014) is434

a special case of the semi-complete data likelihood approach applied to a covariate model. In435

particular, Bonner and Schofield (2014) consider a time invariant individual covariate model given436

in Example 1 of Section 2. Using the terminology presented above, so that the notation differs437

to that given in Bonner and Schofield (2014), they describe the particular case where εObs = ε1:n438

and εMis = εn+1:N . In other words, the individual heterogeneity terms are known for individuals439

observed within the study (though it is implied in their discussion that the approach is more440

generally applicable). The posterior distribution is then formed analogous to Equation (3.4). The441

probability of not being observed within the study, given in Equation (3.2) is estimated using Monte442

Carlo integration.443

4. Examples. We consider two real examples, relating to model Mh and SECR, described444

in Section 2. We note that as with all performance metrics for comparing the efficiency of differ-445

ent model-fitting approaches these are dependent on numerous factors, such as the programming446

language, specific application, data, model specification (including the pseudo-priors specified for447

the super-population approach), initial starting values and machine used. In order to be able to448

draw sensible comparisons for each example we present results obtained from same machine and449

language using the JAGS codes provided in King et al. (2015).450

4.1. Model Mh - snowshoe hares. To demonstrate our proposed semi-complete data likelihood451

approaches for model Mh, we revisit the snowshoe hare data originally examined in the seminal452

paper of Otis et al. (1978) and subsequently analyzed by many others (for example Coull and453

Agresti, 1999; Dorazio and Royle, 2003; Royle et al., 2007; Link, 2013). Over T = 6 days of454

trapping, n = 68 hares were captured with observed frequencies n = (25, 22, 13, 5, 1, 2)′ where455

nt =
∑n

i=1 I(yi = t) and yi =
∑T

j=1 xij for t = 1, . . . , T . We assume logit(pit) = α + εi and456

εi ∼ N(0, σ2) for i = 1, . . . , N and t = 1, . . . , T , with θ = {α} and η = {σ2}.457

We fit the semi-complete data likelihood and complete data likelihood Bayesian super-population458

(CD:R and CD:DE) approaches in R (R Core Team, 2014) using the rjags package (Plummer,459

2013) - see Appendix A of King et al. (2015) for the associated JAGS code. For each analysis we460

specify the priors, α ∼ N(0, 100) and σ2 ∼ Γ−1(0.01, 0.01). We specify Jeffreys’ prior for N , for461

the semi-complete data likelihood and CD:DE. For ease of comparison with CD:R we set ψ ∼462

Beta(0.001, 1), which induces an approximate (truncated) Jeffreys’ prior for N on 1, . . . ,M (Link,463

2013). We note that we consider two JAGS specifications for the semi-complete data likelihood. The464

first approach (SCD1) uses the Jeffreys’ prior specification for N explicitly in the model component465

of the code. However, since Jeffreys’ prior is improper we need to specify an upper bound for N ,466

which we again denote by M (essentially this is a truncated Jeffreys’ prior at M). The second467

approach (SCD2) specifies the (predictive) posterior conditional distribution for N −n, which is of468

Negative-Binomial form (see Section 3.2).469

Following Link (2013), we specify an upper bound ofM = 1000 for the maximum total population470

size for the complete data likelihood super-population approaches and the first semi-complete data471

likelihood approach (SCD1) in JAGS. For the semi-complete data likelihood approach, the integral472
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Table 1
Posterior summaries for snowshoe hare abundance (N) under model Mh using the semi-complete data likelihood
(SCD) approach, CD:R and CD:DE. The semi-complete data likelihood approaches correspond to specifying the
prior for N (SCD1) and the posterior conditional distribution for N − n (SCD2) in the model component of the

JAGS code. For SCD1, CD:R and CD:DE, we specify an upper limit of M = 1000. Effective sample size (ESS) and
effective sample size per second (ESS/s) are included for each approach. A total of 30 million iterations are used in

each case with the realisations thinned by 10.

method mean median SD 95% CI ESS ESS/s

SCD1 100.3 93 32.8 (74, 171) 168347 7.67
SCD2 101.1 93 74.9 (74, 173) 167680 7.74
CD:R 100.6 93 32.7 (74, 171) 13080 0.10

CD:DE 101.3 93 36.2 (74, 178) 9626 0.03

in Equation (3.2) is evaluated using Gauss-Hermite quadrature:473

1− p∗ ≈
q∑
j=1

wj
√
π
[
1 + exp

(√
2σvj + α

)]T ,(4.1)474

where wj and vj are the weights and nodes corresponding to q quadrature points (sensu McClintock475

et al., 2009). The degree of accuracy of this approximation increases with q, and larger q is required476

for larger σ. For our analyses, we specify q = 100.477

For each approach, we ran three chains of 10 million iterations (after initial pilot tuning and478

burn-in) from overdispersed starting values, thinning the realisations by 10 for memory storage479

purposes. Chain convergence was assessed based on visual inspection and Brooks-Gelman-Rubin480

diagnostics (no lack of convergence was identified). On a computer running 64-bit Windows 7481

(3.4GHz Intel Core i7 processor, 16Gb RAM), the analyses required about 6.1 hrs for the first482

semi-complete data likelihood (prior distribution for N specified) approach, 6.0 hrs for the second483

semi-complete data likelihood (posterior conditional distribution for N − n specified), 35.1 hrs for484

CD:R and 83.3 hours for CD:DE. We note that the run times should be interpreted comparatively,485

as they will in general differ across different computers as a result of different processors, operating486

systems etc. The marginal posterior summaries are provided in Table 1, coupled with the effective487

sample sizes (per second) for each approach.488

Although setting M = 1000 may appear conservative, this did appear to influence the skewness489

of the right tail of the marginal posterior distribution for N relative to the (unbounded) posterior490

distribution for N when using the second semi-complete data likelihood approach (SCD2). We491

therefore reran the first semi-complete data likelihood (SCD1) analysis with M = 10000 leading492

to posterior summary results more similar to the second complete data likelihood approach (N493

posterior mean = 100.9, median = 93, SD = 56.1, 95% credible interval (CI) = (74, 172)), but with494

noticeably reduced effective sample size (ESS = 74928) and increased computation time (ESS/s =495

2.81). Nevertheless, specifying larger M for the first semi-complete data likelihood approach comes496

at considerably less computational cost compared to the super-population complete data likelihood497

approaches (CD:R and CD:DE). Avoidance of the need to specify M when using BUGS/JAGS498

remains an advantage of the general semi-complete data likelihood approach (this is true even499

when using Jeffreys’ prior on N by specifying the posterior conditional distribution for N − n in500

the model component of the code).501

For approach SCD1, using an explicit Negative-Binomial or Beta-Binomial approximation to502

Jeffreys’ prior (code is provided in Appendix A of King et al. (2015)) unsurprisingly lead to similar503

results in terms of ESS and ESS/s as for the use of the explicit (truncated) Jeffreys’ prior. However,504

within the model specification code, using the distributions’ hierarchical form where an auxiliary505

variable is introduced for the Poisson mean or Binomial probability and imputed within the MCMC506

algorithm lead to lower ESS and ESS/s as a result of poorer mixing due to posterior correlation507



SEMI-COMPLETE DATA LIKELIHOOD 13

between parameters. We do not consider these prior specifications further.508

Finally, we note that q = 100 appeared to be sufficient in the Gauss-Hermite quadrature approach509

for these analyses, but in general proper specification of q will be case dependent. For example,510

using our estimated posterior median α = −1.2 and the 99.9% quantile σ = 3.3, Equation (4.1)511

with q = 100 is accurate to a precision of five decimal places. However, for σ = 10, q = 100 it is only512

accurate to two decimal places. Care must therefore be taken when specifying q using the semi-513

complete data likelihood approach in JAGS. If computation speed is of little concern Equation (3.2)514

could alternatively be approximated in OpenBUGS using the inbuilt integral function, which also515

has an inbuilt default value for q.516

4.2. Model SECR - gibbons. To illustrate the proposed semi-complete data likelihood approach517

in the context of SECR models we use acoustic survey data from a population of northern yellow-518

cheeked gibbon from northeastern Cambodia. These data were collected from 13 replicate survey519

locations, each consisting of a 3 by 1 linear array of listening posts spaced 0.5km apart. Each520

listening post was manned by a single human observer who recorded the timing of calls at each and521

an estimated compass bearing to each detected gibbon group. Recaptured groups were determined522

using the estimated bearings and detection times. Over T = 1 survey days a total of n = 77 gibbon523

groups were detected across the 13 arrays. We specify the half-normal function for g of the form,524

pijt = exp

(
−||uj − εi||

2

2σ2

)
.525

For each analysis we specify the prior σ ∼ U [0, 10] and assume that the home range centres are526

uniformly distributed over the given area, i.e. fε(εi|η) = 1
A where A is the area of S for each527

i = 1, . . . , N (in this case A = 546km2). Thus we set ψ ∼ Beta(0.001, 1) for the super-population528

approach CD:R and Jeffreys’ prior for N for the complete data likelihood (CD:DE) semi-complete529

likelihood approaches.530

As in Section 4.1 we fit both forms of the semi-complete data likelihood (Equations (3.1) and531

(3.3)) and the super-population complete data likelihood Bayesian approaches CD:R and CD:DE532

using the rjags package (see Appendix B of King et al. (2015) for sample JAGS code). For the533

complete data likelihood approaches and first semi-complete data likelihood (specifying Jeffreys’534

prior on N within the model component of the JAGS code) we specify an upper bound of M = 1000535

for the discrete support of N . For both semi-complete likelihoods the integral in Equation (3.2) was536

approximated by a summation over a rectangular grid of 4200 points. Note that a suitable choice537

of grid will be case dependent, with increases in accuracy resulting from greater spatial extents and538

decreased distances between neighbouring grid points, but at the expense of computational time.539

An exploratory analysis suggested that the grid used was relatively conservative, achieving good540

numerical accuracy.541

To compare the performance of the different approaches, each MCMC algorithm is run for 500,000542

iterations, following a burn-in period of 10,000 iterations (no lack of convergence was identified for543

simulations of this length). On a computer running Windows Server 2008 R2 Enterprise (3.1GHz544

Intel Xeon CPU E5-2687, 256Gb RAM), the analyses required about 46.6 minutes for the first545

semi-complete data likelihood (SCD1; specifying (truncated) Jeffreys’ prior on N in the model546

component) approach, 42.3 minutes for the second semi-complete data likelihood (SCD2; specifying547

the posterior conditional distribution for N −n), 2.5 hours for CD:R and 6.8 hours for CD:DE. As548

for the snowshoe hare example, marginal posterior summaries were similar for all parameters using549

all approaches, but the semi-complete data likelihood approaches required far less computation550

time and yielded greater effective sample sizes than the data-augmented complete data likelihood551

approaches (Table 2).552
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Table 2
Posterior summaries for gibbon group abundance (N) under the SECR models using the semi-complete data
likelihood (SCD) approach, CD:R and CD:DE. The semi-complete data likelihood approaches correspond to

specifying the prior for N (SCD1) and the posterior conditional distribution for N − n (SCD2) in the model
component of the JAGS code. For SCD1, CD:R and CD:DE, we specify an upper limit of M = 1000. Effective

sample size (ESS) and effective sample size per second (ESS/s) are included for each approach. A total of 500,000
iterations are used in each case.

model mean median SD 95% CI ESS ESS/s

SCD1 357.1 328 176.2 (119, 766) 2763 1.01
SCD2 357.7 327 178.4 (120, 775) 3872 1.56
CD:R 355.3 326 176.9 (118, 768) 865 0.09

CD:DE 362.7 338 173.2 (122, 765) 622 0.03

5. Discussion. For closed population models, the semi-complete data likelihood specifies the553

joint probability density function of the model parameters and associated unobserved individual554

heterogeneity terms for only those individuals observed, conditional on the observed capture histo-555

ries and observed individual heterogeneity components. This likelihood is specified as an integral of556

the individual heterogeneity component for the unobserved individuals. The integral is analytically557

intractable but of dimension equal to the dimension of the individual heterogeneity component of558

the model, and hence typically small. This permits the the use of standard (efficient) numerical ap-559

proximation techniques to estimate the integral (for example, in OpenBUGS, the inbuilt integral560

function can be used to conduct one dimensional integration; with similar inbuilt functions in R for561

one or multi-dimensional integrals). The semi-complete data likelihood approach can be applied to562

a range of different individual heterogeneity models.563

Using this semi-complete data likelihood within a Bayesian analysis of closed capture-recapture564

data in the presence of individual heterogeneity, removes the need for trans-dimensional algo-565

rithms to explore the posterior distribution of the parameters due to the “unknown number of566

parameters” problem. Consequently, the models can be fitted efficiently in standard software, such567

as BUGS/JAGS without using a super-population approach. The semi-complete data likelihood568

approach is significantly more efficient than the previous super-population approaches, as demon-569

strated in Section 4, where the improvement for the examples that we considered using the codes570

provided in King et al. (2015) was up to two orders of magnitude. The improvement is in terms571

of both computational time and effective sample sizes (as a result of improved mixing within the572

MCMC algorithm). The efficiency of the super-population approaches is heavily dependent on the573

upper limit specified for the super-population, M . This makes the Bayesian approach feasible for574

fitting to a significantly wider range of data, particularly for spatially explicit capture-recapture,575

where the use of a Bayesian data augmentation technique can be particularly inefficient. In general,576

the ESS and ESS/s for the different approaches is dependent on numerous factors including the577

exact form of the model specification, the pseudo-priors specified in the super-population approach,578

initial starting values and computer on which the simulations are being run.579

This semi-complete data approach has been developed for closed population models in the pres-580

ence of individual heterogeneity. As discussed in Example 1 of Section 2 the inclusion of additional581

observable individual level covariates is immediate and can be seen to be a generalisation of the582

Monte Carlo in MCMC approach proposed by Bonner and Schofield (2014) (see Section 3.3). The583

individual heterogeneity terms correspond to the covariate values and are typically known when584

individuals are observed, though this need not be the case (missing covariate values for individuals585

observed within the study can again be treated as auxiliary variables within the complete data like-586

lihood component). In the presence of time-varying continuous individual covariates the increase587

in dimension of the necessary integral in the associated marginal data likelihood can be reduced by588

efficiently approximating the underlying state process as a hidden Markov model (Langrock and589

King, 2013). The approach can also be immediately applied to other forms of data. For example,590
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these include stopover models permitting arrivals to, and departures from, the study population591

(Pledger et al., 2009) and conventional distance sampling (Buckland et al., 2001). For the latter592

case the capture history is a univariate binary term (1 if an individual is observed and 0 if un-593

observed), the individual heterogeneity component is the perpendicular distance of the individual594

from the line/point transect (known for observed individuals), assumed to have a uniform distribu-595

tion (for line transects) or triangular distribution (for point transects), see for example, Equation596

(7.10) on page 141 of Borchers et al. (2002). Further work lies in identifying and developing similar597

approaches for different forms of data. In addition, for more general Bayesian analyses, highly cor-598

related parameters often leads to inefficient MCMC algorithm, due to poor mixing. To address this599

issue, a reparameterisation may often be used and/or block-updates implemented. An alternative600

approach, motivated by this semi-complete data approach, would be to identify and integrate out601

(using a numerical approximation) the highly correlated parameters. This is an area of current602

research.603
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SUPPLEMENTARY MATERIAL

Supplement: Supplement to “Capture-recapture abundance estimation using a semi-612

complete data likelihood approach”613

(doi: COMPLETED BY THE TYPESETTER). The supplement consists of Appendices A and B614

that provide sample JAGS codes for the examples provided in the text using the different model-615

fitting algorithms (referenced in Sections 3.2, 4.1 and 4.2).616
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